Skip to main content
Log in

Observation of room temperature ferromagnetism in pure La2O3 nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we report the observation of intrinsic room temperature ferromagnetism in pure La2O3 nanoparticles. Magnetism measurement indicates that all of the samples exhibit room temperature ferromagnetism and the saturation magnetization for the samples decreases with the increase in annealing temperature from 700 to 1,000 °C. X-ray photoelectron spectroscopy identifies the presence of oxygen vacancies in the La2O3 nanoparticles. The fitting results of the O 1s spectrum indicate that the variation of the oxygen vacancy concentration is in complete agreement with the change of the saturation magnetization. It is also found that the saturation magnetization of the La2O3 nanoparticles can be tuned by post-annealing in argon or oxygen atmosphere. These results suggest that the oxygen vacancies are largely responsible for the room temperature ferromagnetism in pure La2O3 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Venkatesan, C.B. Fitzgerald, J.M.D. Coey, Nature 430, 630 (2004)

    Article  ADS  Google Scholar 

  2. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B 74, 161306 (2006)

    Article  ADS  Google Scholar 

  3. D. Gao, Z. Zhang, J. Fu et al., J. Appl. Phys. 105, 113928 (2009)

    Article  ADS  Google Scholar 

  4. D. Gao, G. Yang, J. Li et al., J. Phys. Chem. C 114, 18347 (2010)

    Article  Google Scholar 

  5. P. Zhan, W. Wang, C. Liu, Y. Hu, Z. Li, Z. Zhang, P. Zhang, B. Wang, X. Cao, J. Appl. Phys. 111, 033501 (2012)

    Article  ADS  Google Scholar 

  6. J.B. Yi, C.C. Lim, G.Z. Xing et al., Phys. Rev. Lett. 104, 137201 (2010)

    Article  ADS  Google Scholar 

  7. J. Hu, Z. Zhang, M. Zhao, H. Qin, M. Jiang, Appl. Phys. Lett. 93, 192503 (2008)

    Article  ADS  Google Scholar 

  8. B.M. Maoz, E. Tirosh, M.B. Sadan, G. Markovich, Phys. Rev. B 83, 161201 (2011)

    Article  ADS  Google Scholar 

  9. D. Gao, J. Li, Z. Li et al., J. Phys. Chem. C 114, 11703 (2010)

    Article  Google Scholar 

  10. J. Osorio-Guillen, S. Lany, S.V. Barabash, A. Zunger, Phys. Rev. Lett. 96, 107203 (2006)

    Article  ADS  Google Scholar 

  11. N.H. Hong, N. Poirot, J. Sakai, Phys. Rev. B 77, 033205 (2008)

    Article  ADS  Google Scholar 

  12. O. Volnianska, P. Bogusławski, J. Phys. Condens. Matter 22, 073202 (2010)

    Article  ADS  Google Scholar 

  13. T. Li, C.S. Ong, T.S. Herng et al., Appl. Phys. Lett. 98, 152505 (2011)

    Article  ADS  Google Scholar 

  14. D. Mishra, B.P. Mandal, R. Mukherjee, R. Naik, G. Lawes, B. Nadgorny, Appl. Phys. Lett. 102, 182404 (2013)

    Article  Google Scholar 

  15. G.L. Liu, Q. Cao, J.X. Wang et al., Appl. Phys. Lett. 90, 052504 (2007)

    ADS  Google Scholar 

  16. P. Zhan, Z. Xie, Z. Li, W. Wang, Z. Zhang et al., Appl. Phys. Lett. 102, 071914 (2013)

    ADS  Google Scholar 

  17. Q. Wang, Q. Sun, G. Chen et al., Phys. Rev. B 77, 205411 (2008)

    ADS  Google Scholar 

  18. Y.J. Xue, D. Zhu, F. Zhao, J. Mater. Sci. 39, 4063 (2004)

    ADS  Google Scholar 

  19. B. Tang, J. Ge, C. Wu, L. Zhuo et al., Nanotech. 15, 1273 (2004)

    ADS  Google Scholar 

  20. A. Vadivel Murugan, S.C. Navale, V. Ravi, Mater. Lett. 60, 848 (2006)

    Google Scholar 

  21. C.G. Hu, H. Liu, W.T. Dong, Y.Y. Zhang, G. Bao, C.S. Lao, Z.L. Wang, Adv. Mater. 19, 470 (2007)

    Google Scholar 

  22. H. Wong, B.L. Yang, S. Dong, H. Iwai, K. Kakushima, P. Ahmet, Appl. Phys. Lett. 101, 233507 (2012)

    ADS  Google Scholar 

  23. A.R. Derk, B. Li, S. Sharma, G.M. Moore, E.W. McFarland, H. Metiu, Catal. Lett. 143, 406 (2013)

    Google Scholar 

  24. Q.Y. Wen, H.W. Zhang, Y.Q. Song, Q.H. Yang, J. Appl. Phys. 103, 07D120 (2008)

    Google Scholar 

  25. Z. Zhu, D. Gao, G. Yang et al., EPL 97, 17005 (2012)

    ADS  Google Scholar 

  26. Pandey, B. Ghosh, S. Srivastava, P. Kumar, P. Kanjilal, D. Zhou, S. Schmidt, J. Appl. Phys. 107, 023901 (2010)

    ADS  Google Scholar 

  27. L. Zhang, S.H. Ge, Y.L. Zuo, B.M. Zhang, L. Xi, J. Phys. Chem. C 114, 7541 (2010)

    Google Scholar 

  28. Q.Y. Wen, H.W. Zhang, Y.Q. Song et al., J. Phys. Condens. Matter 19, 246205 (2007)

    ADS  Google Scholar 

  29. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B 74, 161306 (2006)

    ADS  Google Scholar 

  30. N.H. Hong, J. Sakai, F. Gervais, J. Magn. Magn. Mater. 316, 214 (2007)

    ADS  Google Scholar 

  31. Z.J. Yan, Y.W. Ma, D.L. Wang, J.H. Wang, Z.S. Gao, L. Wang, P. Yu, T. Song, Appl. Phys. Lett. 92, 081911 (2008)

    ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (Grant No.2012CB933101), NSFC (Grant No. 11034004 and 51202101), the Specialized Research Fund for the Doctoral Program of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desheng Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Q., Gao, D., Zhang, J. et al. Observation of room temperature ferromagnetism in pure La2O3 nanoparticles. Appl. Phys. A 116, 1293–1298 (2014). https://doi.org/10.1007/s00339-014-8223-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8223-8

Keywords

Navigation