Skip to main content
Log in

Hydrodynamic modeling of femtosecond laser ablation of metals in vacuum and in liquid

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We numerically examine the mechanisms involved in nanoparticle formation by laser ablation of metallic targets in vacuum and in liquid. We consider the very early ablation stage providing initial conditions for much longer plume expansion processes. In the case of ultrashort laser ablation, the initial population of primary nanoparticles is formed at this stage. When a liquid is present, the dynamics of the laser plume expansion differs from that in vacuum. Low compressibility of the ambient liquid results in strong confinement conditions. As a result, ablation threshold rises drastically, the ablated material is compressed, part of it becomes supersaturated and the backscattered material additionally heats the target. The extension of a molten layer leads to the additional ablation at a later stage also favoring nanoparticle formation. The obtained results thus explain recent experimental findings and help to predict the role of the experimental parameters. The performed analysis indicates ways of a control over nanoparticle synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Makimura, Y. Kunii, K. Murakami, Jpn. J. Appl. Phys. 35(Part1, No. 9A), 4780 (1996)

  2. D.B. Geohegan, A.A. Puretzky, G. Duscher, S.J. Pennycook, Appl. Phys. Lett. 72(23), 2987 (1998)

    Article  ADS  Google Scholar 

  3. O. Albert, S. Roger, Y. Glinec, J. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrire, E. Millon, Appl. Phys. A 76(3), 319 (2003)

    Article  ADS  Google Scholar 

  4. L.V. Zhigilei, B.J. Garrison, J. Appl. Phys. 88(3), 1281 (2000)

    Article  ADS  Google Scholar 

  5. M.E. Povarnitsyn, T.E. Itina, M. Sentis, P.R. Levashov, K.V. Khishchenko Phys. Rev. B 75:235414 (2007)

    Article  ADS  Google Scholar 

  6. A. Bulgakov, I. Ozerov, W. Marine, Appl. Phys. A 79(4-6), 1591 (2004)

    ADS  Google Scholar 

  7. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang Europhys. Lett. 67(3), 404 (2004)

    Article  ADS  Google Scholar 

  8. J. Freeman, S. Harilal, P. Diwakar, B. Verhoff, A. Hassanein Spectrochimica Acta Part B 87(0), 43 (2013)

    Article  ADS  Google Scholar 

  9. S. Amoruso, R. Bruzzese, M. Vitiello, N.N. Nedialkov, P.A. Atanasov, J. Appl. Phys. 98(4), 044907 (2005)

    Article  ADS  Google Scholar 

  10. A.V. Bulgakov, N.M. Bulgakova, J. Phys. D 28(8), 1710 (1995)

    Article  ADS  Google Scholar 

  11. Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover Books on Physics (Dover Publications, 2002)

  12. B.S. Lukyanchuk, W. Marine, S.I. Anisimov Laser Phys. 8(1), 291 (1998)

    Google Scholar 

  13. T. Ohkubo, M. Kuwata, B. Lukyanchuk, T. Yabe Appl. Phys. A 77(2), 271 (2003)

    ADS  Google Scholar 

  14. F. Mafuné, J.Y. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 107(46), 12589 (2003)

    Article  Google Scholar 

  15. A.V. Simakin, E.N. Lubnin, G.A. Shafeev, Quant. Electron. 30(3), 263 (2000)

    Article  ADS  Google Scholar 

  16. J.P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunier Appl. Phys. A 80, 753 (2005)

    Article  ADS  Google Scholar 

  17. S. Ibrahimkutty, P. Wagener, A. Menzel, A. Plech, S. Barcikowski, Appl. Phys. Lett. 101(10), 103104 (2012)

    Article  ADS  Google Scholar 

  18. A. Vogel, V. Venugopalan, Chem. Rev. 103(2), 577 (2003)

    Article  Google Scholar 

  19. R. Fabbro, P. Peyre, L. Berthe, X. Scherpereel, J. Las. Appl. 10, 265 (1998)

    Article  Google Scholar 

  20. L. Berthe, R. Fabbro, P. Peyre, L. Tollier, E. Bartnicki, J. Appl. Phys. 82(6), 2826 (1997)

    Article  ADS  Google Scholar 

  21. E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, G.A. Shafeev Opt. Expr. 17(15), 12650 (2009)

    Article  ADS  Google Scholar 

  22. A.V. Kabashin, M. Meunier, J. Appl. Phys. 94(12), 7941 (2003)

    Article  ADS  Google Scholar 

  23. A. Menéndez-Manjón, P. Wagener, S. Barcikowski, J. Phys. Chem. C 115(12), 5108 (2011)

    Article  Google Scholar 

  24. M.E. Povarnitsyn, T.E. Itina, P.R. Levashov, K.V. Khishchenko, Appl. Surf. Sci. 253(15), 6343 (2007)

    Article  ADS  Google Scholar 

  25. M.E. Povarnitsyn, T.E. Itina, P.R. Levashov, K.V. Khishchenko, Phys. Chem. Chem. Phys. 15, 3108 (2013)

    Article  Google Scholar 

  26. M.E. Povarnitsyn, N.E. Andreev, P.R. Levashov, K.V. Khishchenko, O.N. Rosmej, Phys. Plasm. 19(2), 023110 (2012)

    Article  ADS  Google Scholar 

  27. M.E. Povarnitsyn, N.E. Andreev, E.M. Apfelbaum, T.E. Itina, K.V. Khishchenko, O.F. Kostenko, P.R. Levashov, M.E. Veysman, Appl. Surf. Sci. 258(23), 9480 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research was sponsored by France–Russia collaboration project PICS 6106, and by the Russian Foundation for Basic Research (Project Nos. 13-08-01179 and 13-02-91057-CNRS). We are also grateful to the CINES of France for the computer support under the project number c2013085015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail E. Povarnitsyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Povarnitsyn, M.E., Itina, T.E. Hydrodynamic modeling of femtosecond laser ablation of metals in vacuum and in liquid. Appl. Phys. A 117, 175–178 (2014). https://doi.org/10.1007/s00339-014-8319-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8319-1

Keywords

Navigation