Skip to main content
Log in

Structural and electrical characterization of BiFeO3–NaTaO3 multiferroic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Using a standard high-temperature solid-state reaction technique, polycrystalline samples of (Bi1−x , Na x ) (Fe1−x , Ta x ) O3 (x = 0.0, 0.5) were prepared. The formation of the desired materials was confirmed by X-ray diffraction. The surface texture of the prepared materials recorded by scanning electron microscope exhibits a uniform grain distribution with small voids suggesting the formation of high-density pellet samples. The impedance and dielectric properties of the materials were investigated as a function of temperature and frequency. The relative dielectric constant and loss tangent of BiFeO3 decrease on addition of NaTaO3 (x = 0.5). The effect of addition of NaTaO3 on grain and grain boundary contributions in the resistive and capacitive components of BiFeO3 was studied using complex impedance spectroscopy. The value of activation energy due to both grain and grain boundary of both the samples is nearly same. The nature of variation of dc conductivity confirms the Arrhenius behavior of the materials. Study of frequency dependence of ac conductivity suggests that the materials obey Jonscher’s universal power law and the presence of ionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Electricpolarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004)

    Article  ADS  Google Scholar 

  2. J. Dho, C.W. Leung, J.L. MacManus-Driscoll, M.G. Blamire, Epitaxial and oriented YMnO3 film growth by pulsed laser deposition. J. Cryst. Growth 267, 548–553 (2004)

    Article  ADS  Google Scholar 

  3. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 67, 180401–180404 (2003)

    Article  ADS  Google Scholar 

  4. W.M. Zhu, Z.G. Ye, Effects of chemical modification on the electrical properties of 0.67BiFeO30.33PbTiO3 ferroelectric ceramics. Ceram. Int. 30, 1435–1442 (2004)

    Article  Google Scholar 

  5. N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 3912 (2005)

    Article  Google Scholar 

  6. G.A. Smolenskii, I. Chupis, Ferroelectromagnets. Soviet Phys. Uspekhi 25, 475–493 (1982)

    Article  ADS  Google Scholar 

  7. P. Fischer et al., J. Phys. C Solid State Phys. 13, 1931 (1980)

    Article  ADS  Google Scholar 

  8. S.-W. Cheong, M. Mostovoy, Nat. Mater. 6, 13–20 (2007)

    Article  ADS  Google Scholar 

  9. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Google Scholar 

  10. J. Nogués, I. Schuller, J. Magn. Magn. Mater. 192, 203 (1999)

    Article  ADS  Google Scholar 

  11. A.K. Pradhan et al., J. Appl. Phys. 97, 093903 (2005)

    Article  ADS  Google Scholar 

  12. Y.P. Wang et al., Appl. Phys. Lett. 84, 1731 (2004)

    Article  ADS  Google Scholar 

  13. M.M. Kumar, V.R. Palkar, Appl. Phys. Lett. 76, 2764 (2000)

    Article  ADS  Google Scholar 

  14. P. Vousden, Acta Cryst. 4, 373 (1951)

    Article  Google Scholar 

  15. Z. Anwar, M.A. Khan, A. Mahmood, M. Asghar, I. Shakir, M. Shahid, I. Bibi, M.F. Warsi, J. Magn. Magn. Mater. 355, 169–172 (2014)

    Article  ADS  Google Scholar 

  16. M.F. Din, I. Ahmad, M. Ahmad, M.T. Farid, M.A. Iqbal, G. Murtaza, M.N. Akhtar, I. Shakir, M.F. Warsi, M.A. Khan, J. Alloy. Compd. 584, 646–651 (2014)

    Article  Google Scholar 

  17. B. Ahmad, A. Mahmood, M.N. Ashiq, M.A. Malana, M. Najam-Ul-Haq, M.F. Ehsan, M.F. Warsi, I. Shakir, J. Alloy. Compd. 590, 193–198 (2014)

    Article  Google Scholar 

  18. E.Wu, POWD: an Interactive Power Diffraction Data Interpretation And Indexing Program V21 School of Physical Sciences (Flinder University of South Australia, Bedford Park)

  19. S. Mohanty, R.N.P. Choudharyn, R. Padhee, B.N. Parida, Ceram. Int. (2014). doi:10.1016/j.ceramint.2014.01.114

    Google Scholar 

  20. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  21. P. Ganguli, S. Devi, A.K. Jha, K.L. Deori, Ferroelectrics 381, 111 (2009)

    Article  Google Scholar 

  22. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, J. Mater. Sci. 42, 7423 (2007)

    Article  ADS  Google Scholar 

  23. A. Agarwal, S. Sanghi, N. Ahlawat, J. Appl. Phys. 111, 113917 (2012)

    Article  ADS  Google Scholar 

  24. M. Kumar, K.L. Yadav, J. Appl. Phys. 100, 074111 (2006)

    Article  ADS  Google Scholar 

  25. S. Selvasekarapandian, M. Vijaykumar, Mater. Chem. Phys. 80, 29 (2003)

    Google Scholar 

  26. A.R. James, K. Srinivas, Mater. Res. Bull. 34, 1301 (1999)

    Article  Google Scholar 

  27. P.S. Das, P.K. Chakraborty, B. Behera, R.N.P. Choudhary, Phys. B 395, 98 (2007)

    Article  ADS  Google Scholar 

  28. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. Interfacial Electrochem. 58, 429 (1975)

    Article  Google Scholar 

  29. M.A.L. Nobre, S. Lanfredi, Catal. Today 78, 529 (2003)

    Article  Google Scholar 

  30. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  ADS  Google Scholar 

  31. M.A.L. Nobre, S. Lanfredi, J. Appl. Phys. 93, 5557 (2003)

    Article  ADS  Google Scholar 

  32. A.R. James, S. Priya, K. Uchino, K. Srinivas, J. Appl. Phys. 90, 3504 (2001)

    Article  ADS  Google Scholar 

  33. S. Lanfredi, J.F. Carvalho, A.C. Hernandes, J. Appl. Phys. 88, 283 (2000)

    Article  ADS  Google Scholar 

  34. A.R. West, D.C. Sinclair, N. Hirose, J. Electroceram. 1, 65 (1997)

    Article  Google Scholar 

  35. J.R. Macdonaled, Solid State Ion. 13, 147 (1984)

    Article  ADS  Google Scholar 

  36. O. Raymond, R. Font, N. Suaerz-Almodovar, J. Portelles, J.M. Siqueiros, J. Appl. Phys. 97, 084108 (2005)

    Article  ADS  Google Scholar 

  37. J.R. Macdonaled, Impedance Spectroscopy, Emphasizing Solid Materials and Systems (Wiley, New York, 1987)

    Google Scholar 

  38. M. Li, A. Feteira, D.C. Sinclair, J. Appl. Phys. 98, 084101 (2005)

    Article  ADS  Google Scholar 

  39. N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Solid State Ion. 179, 689 (2008)

    Article  Google Scholar 

  40. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

Authors are thankful to Ms Samita Pattnayak for providing SEM image for pure BFO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suchismita Mohanty or R. N. P. Choudhary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohanty, S., Choudhary, R.N.P., Parida, B.N. et al. Structural and electrical characterization of BiFeO3–NaTaO3 multiferroic. Appl. Phys. A 116, 1833–1840 (2014). https://doi.org/10.1007/s00339-014-8337-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8337-z

Keywords

Navigation