Skip to main content
Log in

On the phase formation of titanium oxide thin films deposited by reactive DC magnetron sputtering: influence of oxygen partial pressure and nitrogen doping

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work describes about the control on phase formation in titanium oxide thin films deposited by reactive dc magnetron sputtering. Various phases of titanium oxide thin films were deposited by controlling the oxygen partial pressure during the sputtering process. By adding nitrogen gas to sputter gas mixture of oxygen and argon, the oxygen partial pressure was decreased further below the usual critical value, below and above which the sputtering yields metallic and oxide films, respectively. Furthermore, nitrogen addition eliminated the typical hysteretic behaviour between the flow rate and oxygen partial pressure, and significantly influenced the sputter rate. On increasing the oxygen partial pressure, the ratio between anatase and rutile fraction and grain size increases. The fracture cross-sectional scanning electron microscopy together with the complementary information from X-ray diffraction and micro-Raman investigations revealed the evolution and spatial distribution of the anatase and rutile phases. Both the energy delivered to the growing film and oxygen vacancy concentrations are correlated with the formation of various phases upon varying the oxygen partial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1, 1 (2000)

    Article  Google Scholar 

  2. D.M. Blake, P.-C. Maness, Z. Huang, E.J. Wolfrum, J. Huang, W.A. Jacoby, Sep. Purif. Methods 28, 1 (1999)

    Article  Google Scholar 

  3. Z. Ahmad, M. Ahsan, Anti-Corros. Methods Mater. 56, 187 (2009)

    Google Scholar 

  4. W.O. Williamson, Nature 140, 238 (1937)

    Article  ADS  Google Scholar 

  5. Y. Komem, G. Ankonina, A. Rothschild, J.S. Im, U.J. Chung, Phys. Scr. T129, 157 (2007)

    Article  ADS  Google Scholar 

  6. F. Argall, Solid State Electron. 11, 535 (1968)

    Article  ADS  Google Scholar 

  7. G. Dearnaley, A.M. Stoneham, D.V. Morgan, Rep. Prog. Phys. 33, 1129 (1970)

    Article  ADS  Google Scholar 

  8. M. Ottaviani, S. Panero, S. Morzilli, B. Scrosati, M. Lazzari, Solid State Ion. 20, 197 (1986)

    Article  Google Scholar 

  9. T. Ohsuku, T. Hirai, Electrochim. Acta 27, 1263 (1982)

    Google Scholar 

  10. Y. Tachibana, J.E. Moser, M. Grätzel, D.R. Klug, J.R. Durrant, J. Phys. Chem. 100, 20056 (1996)

    Google Scholar 

  11. I. Chung, B. Lee, J. He, R.R.H. Chang, M.G. Kanatzidis, Nature 485, 486 (2012)

    ADS  Google Scholar 

  12. J. Zhang, T. Ayusawa, M. Minagawa, K. Kinugawa, H. Yamashita, M. Matsuoka, M. Anpo, J. Catal. 198, 1 (2001)

    Google Scholar 

  13. J. Zhang, Y. Hu, M. Matsuoka, H. Yamashita, M. Minagawa, H. Hidaka, M. Anpo, J. Phys. Chem. B 105, 8395 (2001)

    Google Scholar 

  14. D.R. Park, J. Zhang, K. Ikeue, H. Yamashita, M. Anpo, J. Catal. 185, 114 (1999)

    Google Scholar 

  15. Y. Jin, G. Li, Y. Zhang, Y. Zhang, L. Zhang, J. Phys. Condens. Matter 13, L913 (2001)

    ADS  Google Scholar 

  16. K. Takagi, T. Makimoto, H. Hiraiwa, T. Negishin, J. Vac. Sci. Technol. A 19, 2931 (2001)

    ADS  Google Scholar 

  17. P. Zeman, S. Takabayashi, J. Vac. Sci. Technol. A 20, 388 (2002)

    ADS  Google Scholar 

  18. K. Okimura, Surf. Coat. Technol. 135, 286 (2001)

    Google Scholar 

  19. H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, F. Lévy, J. Appl. Phys. 75, 2042 (1994)

    ADS  Google Scholar 

  20. G. Hass, Vacuum 2, 331 (1952)

    Google Scholar 

  21. P. Loebl, M. Huppertz, D. Mergel, d. Thin Solid Films 251, 72 (1994)

    ADS  Google Scholar 

  22. J.V. Grahn, M. Lindner, E. Fredriksson, J. Vac. Sci. Technol. A 16, 2495 (1998)

    ADS  Google Scholar 

  23. X. Chen, S. Mao, Chem. Rev. 107, 2891 (2007)

    Google Scholar 

  24. L.J. Meng, M.P. dos Santos, Thin Solid Films 226, 22 (1993)

    ADS  Google Scholar 

  25. R. Knizikevičius, ISSN 1392–1320 Mater. Sci. (Medžg.) 16, 202 (2010)

  26. P. Zeman, S. Takabayashi, Surf. Coat. Technol. 153, 93 (2002)

    Google Scholar 

  27. M. Yamagishi, S. Kuriki, P.K. Song, Y. Shigesato, Thin Solid Films 442, 227 (2003)

    ADS  Google Scholar 

  28. N. Martin, A.M.E. Santo, R. Sanjines, F. Levy, Surf. Coat. Technol. 138, 77 (2001)

    Google Scholar 

  29. P. Zeman, S. Takabayashi, Thin Solid Films 433, 57 (2003)

    ADS  Google Scholar 

  30. R. Kuzel, L. Nichtova, D. Herman, J. Sicha, J. Musil, Z. Kristallogr. Suppl. 26, 241 (2007)

    Google Scholar 

  31. P.K. Song, Y. Irie, S. Ohno, Y. Sato, Y. Shigesato, Jpn. J. Appl. Phys. 43, L442 (2004)

    ADS  Google Scholar 

  32. K. Okimura, Surf. Coat. Technol. 135, 286 (2001)

    Google Scholar 

  33. O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke, D. Glöß, Surf. Coat. Technol. 180–181, 538 (2004)

    Google Scholar 

  34. P.K. Song, Y. Irie, Y. Sato, Y. Shigesato, Jpn. J. Appl. Phys. 43, L358 (2004)

    ADS  Google Scholar 

  35. Y. Leprince-Wang, D. Souche, K. Yu-Zhang, S. Fisson, G. Vuye, J. Rivory, Thin Solid Films 359, 171 (2000)

    ADS  Google Scholar 

  36. J. Musil, J. Sicha, D. Herman, R. Cerstvy, J. Vac. Sci. Technol. A 25, 666 (2007)

    Google Scholar 

  37. R. Kuzel, L. Nichtova, Z. Matej, J. Sicha, J. Musil, Z. Kristallogr. Suppl. 27, 287 (2008)

    Google Scholar 

  38. D. Severin, O. Kappertz, T. Kubart, T. Nyberg, S. Berg, A. Pflug, M. Siemers, M. Wuttig, Appl. Phys. Lett. 88, 161504 (2006)

    ADS  Google Scholar 

  39. D. Severin, K. Sarakinos, O. Kappertz, A. Pflug, M. Wuttig, J. Appl. Phys. 103, 083306 (2008)

    ADS  Google Scholar 

  40. International Centre for Diffraction Data, PDF ID No. 21-1272 and 21-1276

  41. P. Zeman, S. Takabayashi, Surf. Coat. Technol. 153, 93 (2002)

    Google Scholar 

  42. J. Musil, D. Herman, J. Sicha, J. Vac. Sci. Technol. A 24, 521 (2006)

    Google Scholar 

  43. J. Musil, J. Sicha, D. Herman, R. Cerstvy, J. Vac. Sci. Technol. A 25, 666 (2007)

    Google Scholar 

  44. K. Okimura, Surf. Coat. Technol. 135, 286 (2001)

    Google Scholar 

  45. S. Takeda, S. Suzuki, H. Odaka, H. Hosono, Thin Solid Films 392, 338 (2001)

    ADS  Google Scholar 

  46. L.D. Arsov, C. Kormann, W. Plieth, J. Raman Spectrosc. 22, 573 (1991)

    ADS  Google Scholar 

  47. H. Chang, P.J. Huang, J. Raman Spectrosc. 29, 97 (1998)

    ADS  Google Scholar 

  48. D.C. Cronemeyer, Phys. Rev. 87, 876 (1952)

    ADS  Google Scholar 

  49. S.P.S. Porto, P.A. Fleury, T.C. Damen, Phys. Rev. 154, 522 (1967)

    ADS  Google Scholar 

  50. V. Swamy, A. Kuznetsov, L.S. Dubrovinsky, R.A. Caruso, D.G. Shchukin, B.C. Muddle, Phys. Rev. B 71, 184302 (2005)

    ADS  Google Scholar 

  51. J.H. Parker, D.W. Feldman, M. Ashkin, Phys. Rev. 155, 712 (1967)

    ADS  Google Scholar 

  52. K.J. Kingma, R.J. Hemley, Am. Mineral. 79, 269 (1994)

    Google Scholar 

  53. I. De Wolf, Semicond. Sci. Technol. 11, 139 (1996)

    ADS  Google Scholar 

  54. D. Krishnamurti, Proc. Indian Acad. Sci. Sect. A 55, 290 (1962)

    Google Scholar 

  55. T. Asanuma, T. Matsutani, C. Liu, T. Mihara, M. Kiuchi, J. Appl. Phys. 95, 6011 (2004)

    ADS  Google Scholar 

  56. D. Mardare, Mater. Sci. Eng. B 95, 83 (2002)

    Google Scholar 

  57. J.T. Mayer, U. Diebold, T.E. Madey, E. Garfunkel, J. Electron Spectrosc. Relat. Phenom. 1–11, 73 (1995)

    Google Scholar 

  58. C. Rath, P. Mohanty, A.C. Pandey, N.C. Mishra, J. Phys. D Appl. Phys. 42, 205101 (2009)

    ADS  Google Scholar 

  59. R.D. Shannon, J. Appl. Phys. 35, 3414 (1964)

    ADS  Google Scholar 

  60. H. Tomaszewski, H. Poelman, D. Depla, D. Poelman, R. De Gryse, L. Fiermans, M.F. Reyniers, G. Heynderickx, G.B. Marin, Vacuum 31–38, 68 (2003)

    Google Scholar 

  61. D.A.D. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011)

    ADS  Google Scholar 

  62. H. Zhang, J.F. Banfield, Chem. Mater. 14, 4145 (2002)

    Google Scholar 

  63. B. Choudhury, A. Choudhury, Int. Nano Lett. 3, 55 (2013)

    Google Scholar 

  64. P. Zeman, S. Takabayashi, Surf. Coat. Technol. 153, 93 (2002)

    Google Scholar 

  65. K. Okimura, A. Shibata, N. Maeda, K. Tachibana, Y. Noguchi, K. Tsuchida, Jpn. J. Appl. Phys. 34(4950), 90 (1995)

    Google Scholar 

  66. J. Musil, D. Herman, J. Sicha, J. Vac. Sci. Technol. A 24, 521 (2006)

    Google Scholar 

  67. J.E. Greene, S.A. Barnett, J. Vac. Sci. Technol. 21, 285 (1982)

    ADS  Google Scholar 

  68. I. Petrov, L. Hultman, U. Helmerson, J.E. Sundgren, J.E. Greene, Thin Solid Films 169, 299 (1989)

    ADS  Google Scholar 

  69. T. Abe, T. Yamashina, Thin Solid Films 38, 271 (1976)

    Google Scholar 

  70. D. Wicaksana, A. Kobayashi, A. Kinbara, J. Vac. Sci. Technol. A 10, 1479 (1992)

    ADS  Google Scholar 

  71. Y. Guo, X.-W. Zhang, W.-H. Weng, G.-R. Han, Thin Solid Films 515, 7117 (2007)

    ADS  Google Scholar 

  72. J.A. Gamboa, D.M. Pasquevich, J. Am. Ceram. Soc. 75, 2934 (1992)

    Google Scholar 

  73. R.D. Shannon, J.A. Pask, J. Am. Ceram. Soc. 148, 391 (1965)

    Google Scholar 

  74. M. Batzill, E.H. Morales, U. Diebold, Phys. Rev. Lett. 96, 26103 (2006)

    ADS  Google Scholar 

  75. V. Schwartz, D.R. Mullins, W. Yan, B. Chen, S. Dai, S.H. Overbury, J. Phys. Chem. B 108, 15782 (2004)

    Google Scholar 

  76. K. Yokota, K. Nakamura, Y. Yano, F. Miyashita, Surf. Coat. Technol. 158–159, 573 (2002)

    Google Scholar 

  77. M. Takeuchi, Phys. Stat. Solidi (a) 55, 653 (1979)

    ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank and appreciate Dr. S. Dhara, Surface and Nanoscience Division, Indira Gandhi Center for Atomic Research, Kalpakkam, India, for offering the micro-Raman facility. Likewise, Mr. Nanda Gopala Krishna Dhaipule and Dr. U. Kamachi Mudali, Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India, for the XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanathaswamy Pandian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandian, R., Natarajan, G., Rajagopalan, S. et al. On the phase formation of titanium oxide thin films deposited by reactive DC magnetron sputtering: influence of oxygen partial pressure and nitrogen doping. Appl. Phys. A 116, 1905–1913 (2014). https://doi.org/10.1007/s00339-014-8351-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8351-1

Keywords

Navigation