Skip to main content
Log in

Laser-assisted generation of gold nanoparticles and nanostructures in liquid and their plasmonic luminescence

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) and surface nanostructures (NS) are produced via laser ablation of a bulk gold target in liquid using second harmonics of 10 ps Nd:YAG laser (532 nm) with repetition rate of 50 kHz. The morphology and plasmon photoluminescence (PL) properties of obtained nanoscale objects are described. Transmission electron microscopy and field emission scanning electron microscopy are used for morphology characterization of NPs and NS, respectively. Plasmon PL of both gold NPs and NS is experimentally studied using the third harmonics of the Nd:YAG picosecond laser (355 nm) as a pump. The wavelength of intensity maximum of PL of Au NPs colloidal solution virtually coincides with the position of Au NPs plasmon absorption peak. Real-time excitation of both plasmon PL and Raman scattering of surrounding liquid by picosecond laser pulses in aqueous colloidal solution is also investigated. The efficient cross section of plasmon PL of Au NPs colloid is evaluated using Raman scattering of water as a comparative parameter. The results are in good agreement with values obtained in previous works. Plasmon PL from self-organized NS on the Au surface produced via laser ablation is observed for the first time. Its spectrum is compared to PL spectra of both aqueous colloidal solutions of NPs and of NPs deposited on a Si wafer. The obtained experimental data are discussed with reference to the band structure of bulk Au.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. A. Mooradian, Phys. Rev. Lett. 22(5), 185–187 (1969)

    Article  ADS  Google Scholar 

  2. G.T. Boyd, Z.H. Yu, Y.R. Shen, Phys. Rev. B 33, 7923–7936 (1986)

    Article  ADS  Google Scholar 

  3. G.T. Boyd, Th Rasing, J.R.R. Leite, Y.R. Shen, Phys. Rev. B 30, 519 (1984)

    Article  ADS  Google Scholar 

  4. C.-Y. Cho, S.-J. Lee, J.-H. Song, S.-H. Hong, S.-M. Lee et al., Appl. Phys. Lett. 98, 051106 (2011)

    Article  ADS  Google Scholar 

  5. H.L. Huang, C.F. Chou, S.H. Shiao, Y.C. Liu, J.J. Huang, S.U. Jen, H.P. Chiang, HP. Opt. Express 21(S5), A901–A908 (2013)

    Article  ADS  Google Scholar 

  6. S. Lau Truong, G. Levi, F. Bozon-Verduraz, A.V. Petrovskaya, A.V. Simakin, G.A. Shafeev, Appl. Surf. Sci. 254(4), 1236–1239 (2007)

    Article  ADS  Google Scholar 

  7. Y.H. Chan, J. Chen, S.E. Wark, C.L. Skiles, D.H. Son, J.D. Batteas, ACS Nano 3(7), 1735–1744 (2009)

    Article  Google Scholar 

  8. D.J. Bergman, M.I. Stockman, Phys. Rev. Lett. 90, 027402 (2003)

    Article  ADS  Google Scholar 

  9. M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Nature 460, 1110–1112 (2009)

    Article  ADS  Google Scholar 

  10. M. Beversluis, A. Bouhelier, L. Novotny, Phys. Rev. B 68, 115433 (2003)

    Article  ADS  Google Scholar 

  11. M. Birnbaum, J. Appl. Phys. 36, 3688 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  12. E.V. Zavedeev, A.V. Petrovskaya, A.V. Simakin, G.A. Shafeev, Quantum Electron. 36(10), 978 (2006)

    Article  ADS  Google Scholar 

  13. S. Lau Truong, G. Levi, F. Bozon-Verduraz, A.V. Petrovskaya, A.V. Simakin, G.A. Shafeev, Appl. Phys. A 89(2), 373 (2007)

    Article  ADS  Google Scholar 

  14. E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, G.A. Shafeev, Nanotechnology 20, 105303 (2009)

    Article  ADS  Google Scholar 

  15. F. Costache, S. Kouteva-Arguirova, J. Reif, Appl. Phys.A 79, 1429–1432 (2004)

    Article  ADS  Google Scholar 

  16. A. Lin, D.H. Son, I.H. Ahn, G.H. Song, W.T. Han, Opt. Express 15(10), 6374–6379 (2007)

    Article  ADS  Google Scholar 

  17. G.A. Shafeev, Influencing Matter, in Lasers in Chemistry, vol. 2, ed. by M. Lackner (Wiley, Wienheim, 2008), pp. 713–741

    Google Scholar 

  18. G.A. Shafeev, in Formation of nanoparticles by laser ablation of solids in liquids, ed. by E.D. Carlson. Encyclopedia of Nanotechnology, (Nova Science Publishers, Hauppauge NY, 2009), pp. 991–1026

  19. T. Pradeep, Thin Solid Films 517(24), 6441–6478 (2009)

    Article  ADS  Google Scholar 

  20. J.A. Creighton, D.G. Eadon, J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991)

    Article  Google Scholar 

  21. L. Prodi, G. Battistini, L. S. Dolci, M. Montalti, N. Zaccheroni, in Luminescence of gold nanoparticles, ed. by D.L. Andrews, Z. Gaburro. Frontiers in Surface Nanophotonics: Principles and Applications, vol 133 (Springer, New York, 2007), pp. 99–128

  22. S.L. Truong, G. Levi, F. Bozon-Verduraz, A.V. Petrovskaya, A.V. Simakin, G.A. Shafeev, Appl. Phys. A 89(2), 373–376 (2007)

    Article  ADS  Google Scholar 

  23. E.V. Barmina, E. Stratakis, K. Fotakis, G.A. Shafeev, Quantum Electron. 40(11), 1012–1020 (2010)

    Article  ADS  Google Scholar 

  24. V.V. Voronov, S.I. Dolgaev, S.V. Lavrishchev, A.A. Lyalin, A.V. Simakin, G.A. Shafeev, Quantum Electron. 30(8), 710–714 (2000)

    Article  ADS  Google Scholar 

  25. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, J. Opt. Soc. Am. B 13(2), 459–468 (1996)

    Article  ADS  Google Scholar 

  26. G. V. Yukhnevich, in Infrared Spectroscopy of Water, ed. by L.A. Gribov (Nauka, Moscow, 1973) (In Russian), p. 121

  27. G.W. Faris, R.A. Copeland, Appl. Opt. 36(12), 2686–2688 (1997)

    Article  ADS  Google Scholar 

  28. N. Abe, M. Ito, J. Raman Spectrosc. 7, 161–167 (1978)

    Article  ADS  Google Scholar 

  29. F. Bozon-Verduraz, R. Brayner, V.V. Voronov, N.A. Kirichenko, A.V. Simakin, G.A. Shafeev, Quantum Electron. 33(8), 714–720 (2003)

    Article  ADS  Google Scholar 

  30. A. Gaiduk, M. Yorulmaz, M. Orrit, Chem. Phys. Chem. 12, 1536–1541 (2011)

    Article  Google Scholar 

  31. M.B. Mohamed, V. Volkov, S. Link, M.A. El-Sayed, Chem. Phys. Lett. 317, 517–523 (2000)

    Article  ADS  Google Scholar 

  32. P.G. Kuzmin, G.A. Shafeev, A.V. Simakin, V.V. Voronov, Phys. Wave Phenom. 16(4), 261–267 (2008)

    Article  ADS  Google Scholar 

  33. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, Phys. Chem. B 107(3), 668–677 (2003)

    Article  Google Scholar 

  34. S. Raza, N. Stenger, S. Kadkhodazadeh, S.V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, N.A. Mortensen, Nanophotonics 2(2), 131–138 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

O.V. Uvarov, A. Manousaki, and V. Aleshin are thanked for their help in samples characterization. The work was partially supported by the Grants NSh-214.2012.2 of the President of the Russian Federation for Support of Leading Scientific Schools, Presidential scholarship for young scientists and postgraduate students SP-3,546.2013.2 and Russian Foundation for Basic Researches, Grant 12-02-31053_mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Kuzmin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barmina, E.V., Shafeev, G.A., Kuzmin, P.G. et al. Laser-assisted generation of gold nanoparticles and nanostructures in liquid and their plasmonic luminescence. Appl. Phys. A 115, 747–752 (2014). https://doi.org/10.1007/s00339-014-8385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8385-4

Keywords

Navigation