Skip to main content

Advertisement

Log in

Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation?

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Semiconducting large bandgap oxides are considered as interesting candidates for high-temperature thermoelectric power generation (700–1,200 °C) due to their stability, lack of toxicity and low cost, but so far they have not reached sufficient performance for extended application. In this review, we summarize recent progress on thermoelectric oxides, analyze concepts for tuning semiconductor thermoelectric properties with view of their applicability to oxides and determine key drivers and limitations for electrical and thermal transport properties in oxides based on our own experimental work and literature results. For our experimental assessment, we have selected representative multicomponent oxides that range from materials with highly symmetric crystal structure (SrTiO3 perovskite) over oxides with large densities of planar crystallographic defects (Ti n O2n−1 Magnéli phases with a single type of shear plane, NbO x block structures with intersecting shear planes and WO3−x with more defective block and channel structures) to layered superstructures (Ca3Co4O9 and double perovskites) and also include a wide range of their composites with a variety of second phases. Crystallographic or microstructural features of these oxides are in 0.3–2 nm size range, so that oxide phonons can efficiently interact with them. We explore in our experiments the effects of doping, grain size, crystallographic defects, superstructures, second phases, texturing and (to a limited extend) processing on electric conductivity, Seebeck coefficient, thermal conductivity and figure of merit. Jonker and lattice-versus-electrical conductivity plots are used to compare specific materials and material families and extract levers for future improvement of oxide thermoelectrics. We show in our work that oxygen vacancy doping (reduction) is a more powerful driver for improving the power factor for SrTiO3, TiO2 and NbO x than heterovalent doping. Based on our Seebeck-conductivity plots, we derived a set of highest achievable power factors. We met these best values in our own experiments for our titanium oxide- and niobium oxide-based materials. For strontium titanate-based materials, the estimated highest power factor was not reached; further material improvement is possible and can be reached for materials with higher carrier densities. Our results show that periodic crystallographic defects and superstructures are most efficient in reducing the lattice thermal conductivity in oxides, followed by hetero- and homovalent doping. Due to the small phonon mean free path in oxides, grain boundary scattering in nanoceramics or materials with nanodispersions is much less efficient. We investigated the impact of texturing in Ca3Co4O9 ceramics on thermoelectric performance; we did not find any improvement in the overall in-plane performance of a textured ceramic compared to the corresponding random ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. D.M. Rowe (ed.), Thermoelectrics Handbook (CRC Taylor and Francis, London, 2006)

    Google Scholar 

  2. G.S. Nolas, J. Poon, M. Kanatzidis, Mater. Res. Soc. Bull. 31, 199–205 (2006)

    Article  Google Scholar 

  3. T.M. Tritt, M.A. Subramanian, MRS Bull. 31, 188–198 (2006)

    Article  Google Scholar 

  4. K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, W. Wang, C. Wan, J. Am. Ceram. Soc. 96, 1–23 (2013)

    Article  Google Scholar 

  5. M. Novak, L. Ziolek, Chem. Rev. 99, 3603–3624 (1999)

    Article  Google Scholar 

  6. I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, R12685 (1997)

    Article  ADS  Google Scholar 

  7. K. Koumoto, I. Terasaki, R. Funahashi, Mater. Res. Soc. Bull. 31, 206–210 (2006)

    Article  Google Scholar 

  8. M. Ohtaki, K. Araki, K. Yamamoto, J. Electron. Mater. 38, 1234 (2009)

    Article  ADS  Google Scholar 

  9. E.M. Mitchell, Q. Zhu, J. Song, H. Peng, A. Freeman, T.O. Mason, J. Appl. Phys. 109, 013713 (2011)

    Article  ADS  Google Scholar 

  10. M. Shikano, R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003)

    Article  ADS  Google Scholar 

  11. T. Ohta, H. Ohta, M. Hirano, H. Hosono, K. Koumoto, Appl. Phys. Lett. 87, 092108 (2005)

    Article  ADS  Google Scholar 

  12. J. Anderson, B. Collen, A. Magneli, Acta Chem. Scand. 11, 1641 (1957)

    Article  Google Scholar 

  13. Y.I. Ravich, Phys. Stat. Sol. 43, 453 (1971)

    Article  ADS  Google Scholar 

  14. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B47, 16631–16634 (1993)

    Article  ADS  Google Scholar 

  15. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, J. Snyder, Science 321, 558 (2008)

    Article  ADS  Google Scholar 

  16. A. Gossard, C. Palmstroem, UC St Barbara

  17. L.D. Hicks, T.C. Harman, M.S. Dresselhaus, Appl. Phys. Lett. 63, 3230 (1993)

    Article  ADS  Google Scholar 

  18. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. Laforge, Science 297, 2229 (2002)

    Article  ADS  Google Scholar 

  19. C. Uher in Thermoelectrics Handbook; Macro to Nano, ed. by D.M. Rowe (CRC, Boca Raton, 2006) chapter 34, p. 34

  20. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, J. Am. Chem. Soc. 133, 7837–7846 (2011)

    Article  Google Scholar 

  21. M. Dresselhaus et al., Adv. Mater. 19, 1043–1053 (2007)

    Article  Google Scholar 

  22. M. Ohtaki, K. Araki, J. Jap, Ceram. Soc. 119, 813–816 (2011)

    Article  Google Scholar 

  23. M. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, P. Gogna, Adv. Mater. 19, 1043–1053 (2007)

    Article  Google Scholar 

  24. M. Backhaus-Ricoult, J.R. Rustad, D. Vargheese, I. Dutta, K. Work, J. Electron. Mater. 41, 1636–1647 (2012)

    Article  ADS  Google Scholar 

  25. J. Feng, B. Xiao, R. Zhou, W. Pan, D.R. Clark, Acta Mater. 60, 3380–3392 (2012)

    Article  Google Scholar 

  26. R.J.D. Tilley, Surf Defect Prop Solids 8, 121–201 (1980)

    Google Scholar 

  27. R. Moos, K.H. Härdtl, J. Am. Ceram. Soc. 80(10), 2549 (1997)

    Article  Google Scholar 

  28. J. Maier, Physical Chemistry of Ionic Materials (Wiley, London, 2011)

    Google Scholar 

  29. M. Yamamoto, H. Ohta, K. Koumoto, Appl. Phys. Lett. 90, 072101 (2007)

    Article  ADS  Google Scholar 

  30. S.N. Ruddlesdon, P. Popper, New compounds of the K2NiF4. Acta Crystallogr. 10, 538 (1957)

    Article  Google Scholar 

  31. K. Koumoto, S. Ohta, H. Ohta, in Proceedings of the 23rd International Conference on Thermoelectrics IEEE, Vol. 92 (2005)

  32. K.H. Lee, S.W. Kim, H. Ohta, K. Koumoto, J. Appl. Phys. 101, 083707 (2008)

    Article  ADS  Google Scholar 

  33. J.L. Murray, H.A. Wriedt, Bull. Alloy Phase Diagr. 8, 148 (1987)

  34. G. Eriksson, A. Pelton, Metall. Trans. B 24B(5), 795–805 (1993)

    Article  ADS  Google Scholar 

  35. T. Bak, J. Nowotny, M.K. Nowotny, J. Phys. Chem. B 110, 21560–21567 (2006)

    Article  Google Scholar 

  36. J. Nowotny, T. Bak, T. Burg, Ionics 13, 3 (2007)

    Article  Google Scholar 

  37. J.F. Baumard, E. Tani, J. Chem. Phys. 67, 867 (1977)

  38. L.R. Sheperd, T. Bak, J. Nowotny, Int. J. Hydrog. Energy 32, 2660 (2007)

    Article  Google Scholar 

  39. J. Anderson, B. Collen, A. Magneli, Acta Chem. Scand. 11, 1641 (1957)

    Article  Google Scholar 

  40. Y. Lu, Y. Matsuda, K. Sagara, L. Hao, Adv. Mater. Res. 415–417, 1291–1296 (2012)

    Google Scholar 

  41. R. Tu, G.S. Huo, T. Kimura, T. Goto, Thin Solid Films 518, 6927 (2010)

    Article  ADS  Google Scholar 

  42. M. Mikami, K. Ozaki, J. Phys. Conf. Ser. 379, 012006 (2012)

    Article  ADS  Google Scholar 

  43. C.H. Ruescher, Physica C 200, 129–139 (1992)

    Article  ADS  Google Scholar 

  44. H. Inaba, T. Mima, K. Naito, J. Chem. Thermodyn. 16(5), 411–418 (1984)

    Article  Google Scholar 

  45. R.P. Elliott, Trans. Am. Soc. Met. 52, 990–1005 (1960)

    Google Scholar 

  46. K. Naito, N. Kamegashira, N. Sasaki, J. Solid State Chem. 35(3), 305–311 (1980)

    Article  ADS  Google Scholar 

  47. Numerical Landolt-Bornstein, Data and Functional Relationships in Science and Technology, New Series (Springer, Berlin, 1987)

    Google Scholar 

  48. M. Backhaus, US 20130126800. A1 Niobium oxide-based thermoelectric composites

  49. H.A. Wriedt in Monograph Series on Alloy Phase Digrams: Phase Diagrams of Binary Tungsten Alloys. ed. by S.V. Nagender Naidu, P. Rama Rao (Indian Institute of Metals, Calcutta, 1991)

  50. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, Phys. Rev. 39(B62), 166–175 (2000)

    Article  Google Scholar 

  51. S. Li, R. Funahashi, I. Matsubara, K. Ueno, S. Sodeka, H. Yamada, Chem. Mater. 12, 2424–2427 (2000)

    Article  Google Scholar 

  52. Y. Miyazaki, K. Kudo, M. Akoshima, Y. Ono, Y. Koike, T. Kajitani, Jpn. J. Appl. Phys. 39, L531–L533 (2000)

    Article  ADS  Google Scholar 

  53. D. Singh, in Theoretical Considerations for Finding New Thermoelectric Materials, Mat. Res. Soc. Symp. Proc. 691 (2002) G1.2.1

  54. I. Terasaki, Transport Properties and Electronic States of the Thermoelectric Oxide NaCo2O4. arXiv:cond-mat/0207315 (2002)

  55. K. Held, R. Arita, V.I. Anisimov, K. Kuroki, The LDA + DFMT Route to Identify Good Thermoelectrics, arXiv:0903.2994 [cond-mat.str-el] (2009)

  56. G.K.H. Madsen, D. J. Singh, BolzTraP. A code for calculating band-structure dependent quantities. arXiv:cond-mat/0602203 [cond-mat.mtrl-sci] (2006)

  57. A. Kinaci, C. Sevik, T. Cagin, Phys. Rev. B 82, 155114 (2010)

    Article  ADS  Google Scholar 

  58. X.W. Zhou, S. Aubry, R.E. Jones, A. Greenstein, P.K. Schelling, more accurate molecular dynamics calculation of thermal conductivity. case study: GaN bulk crystals. arXiv:1206.5445 [cond-mat.mtrl-sci] (2012)

  59. Y. Le Page, M. Marezio, J. Solid State Chem. 53, 13–21 (1984)

    Article  ADS  Google Scholar 

  60. M. Weissmann, R. Weht, Phys. Rev. B. 84, 144419 (2011)

    Article  ADS  Google Scholar 

  61. A. Janotti, C. Franchini, J.B. Varley, G. Kresse, C.G. Van de Walle, Dual behavior of excess electrons in rutile TiO2. arXiv:1212.5949 [cond-mat.mtrl-sci])

  62. O. Byl, J.T. Yates, J. Phys. Chem. B. Lett. 110, 22966–22967 (2006)

    Article  Google Scholar 

  63. N.A. Deskins, M. Dupuis, Phys. Rev. B 75, 195212 (2007)

    Article  ADS  Google Scholar 

  64. A. Janotti, J.B. Varley, P. Rinke, N. Umezawa, G. Kresse, C.G. Van de Walle, Phys. Rev. B. 81, 085212 (2010)

    Article  ADS  Google Scholar 

  65. P.M. Chaikin, G. Beni, Phys. Rev. B 13, 647–651 (1976)

    Article  ADS  Google Scholar 

  66. Y. Miyauchi, M. Tada, M. Yoshiya, S. Harada, K. Tanaka, H. Yasuda, H. Inui, in: The 4th International Symposium on Advanced Microscopy and Theoretical Calculations (2014)

  67. R.F. Bartholomew, D.R. Frankl, Phys. Rev. 187, 828–833 (1969)

  68. G.H. Jonker, Philips Res. Repts 23, 131–138 (1968)

    Google Scholar 

  69. J. Nell, B.J. Wood, S.E. Dorris, T.O. Mason, J. Solid State Chem. 82, 247–254 (1989)

    Article  ADS  Google Scholar 

  70. Q. Zhu, E. Mitchell Hopper, B.J. Ingram, T.O. Mason, J. Am. Ceram. Soc. 94, 187–193 (2011)

    Article  Google Scholar 

  71. N.-H. Chan, R.K. Sharma, D.M. Smyth, Solid-State Sci. Technol. 128, 1762–1768 (1981)

    Google Scholar 

  72. J.C. Abrantes, J.A. Labrincha, J.R. Frade, Ionics 3, 16–22 (1997)

    Article  Google Scholar 

  73. S. Ohta, H. Ohta, K. Koumoto, Jpn. J. Ceram. Soc. 114, 102–105 (2006)

    Article  Google Scholar 

  74. US Patent 8628680, Reduced oxides having large thermoelectric ZT values. M. Backhaus-Ricoult, C. Smith, T. StClair (2014)

  75. L. Moore, L. Smith, in Ceramic for Environmental and Energy Applications II, ed. by Faith Dogan et al. (2013) [in print] Ceramic Transactions, Volume 246, p45, 2014 (Wiley Press)

  76. M. Backhaus-Ricoult, L. Moore, C. Smith, T. St. Clair, US 20130240801A1, Reduced oxides having large thermoelectric ZT values

  77. S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, K. Koumoto, Appl. Phys. Lett. 87, 092108 (2005)

    Article  ADS  Google Scholar 

  78. H. Ohta, S.W. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Nat. Mater. 6, 129 (2007)

    Article  ADS  Google Scholar 

  79. W. Wunderlich, Solid State Electron. 52, 1082–1087 (2008)

    Article  ADS  Google Scholar 

  80. A. Kinaci, C. Sevik, T. Cagin, Phys. Rev. B 82, 155114 (2010)

    Article  ADS  Google Scholar 

  81. US patent application by M. Backhaus-Ricoult, L. Moore, C. Smith, T.P. St Clair [in print]

  82. J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, Int. J. Hydrog. Energy 32, 2630–2643 (2007)

    Article  Google Scholar 

  83. T. Kuratomi, K. Yamaguchi, M. Yamawaki, T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Solid State Ionics 154–155, 223–228 (2002)

    Article  Google Scholar 

  84. M.K. Nowotny, T. Bak, J. Nowotny, J. Phys. Chem. B 110, 16283–16291 (2006)

    Article  Google Scholar 

  85. F.M. Hossain, L. Sheppard, J. Nowotny, G.E. Murch, J. Phys. Chem. Solids 69, 1820–1828 (2008)

    Article  ADS  Google Scholar 

  86. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrel, J. Phys. Chem. Solids 64, 1057–1067 (2003)

    Article  ADS  Google Scholar 

  87. M.K. Nowotny, T. Bak, J. Nowotny, J. Phys. Chem. B 110, 16270–16283 (2006)

    Article  Google Scholar 

  88. R.N. Blumenthal, J. Coburn, J. Baukus, W.M. Hirthe, J. Phys. Chem. Solids 27, 643–1077 (1966)

    Article  ADS  Google Scholar 

  89. P. Kofstad, Less Common Meter. 13, 635 (1967)

    Article  Google Scholar 

  90. R. Hsiguti, Adv. Mater. Sci. 2, 69 (1972)

    ADS  Google Scholar 

  91. M. Hollander, P. Castro, Phys. Rev. 119, 6 (1960)

    Article  Google Scholar 

  92. I. Tsuyumoto, T. Hososno, M. Murata, JACS 89, 2301–2303 (2006)

    Google Scholar 

  93. S. Harada, K. Tanaka, H. Inui, J. Appl. Phys. 108, 083703 (2010)

    Article  ADS  Google Scholar 

  94. N. Okinaka, T. Akiyama, Jpn. J. Appl. Phys. 45, 7009–7010 (2006)

    Article  ADS  Google Scholar 

  95. R. Sikora, J. Phys. Chem. Solids 66, 1069–1073 (2005)

    Article  ADS  Google Scholar 

  96. L.R. Sheppard, T. Bak, J. Nowotny, J. Phys. Chem. C112, 611–617 (2008)

    Google Scholar 

  97. C.H. Ruescher, Phys. C 200, 129–139 (1992)

    Article  ADS  Google Scholar 

  98. J. Roberson, R. Rapp, J. Phys. Chem. Solids 30, 1119 (1969)

    Article  ADS  Google Scholar 

  99. R.F. Jannincik, D.H. Whitmore, J. Phys. Chem. Solids 27, 1183 (1966)

    Article  ADS  Google Scholar 

  100. R.F. Janninck, D.H. Whitmore, J. Chem. Phys. 39, 179 (1963)

    Article  ADS  Google Scholar 

  101. R.F. Janninck, D.H. Whitmore, J. Chem. Phys. 37, 2750 (1962)

    Article  ADS  Google Scholar 

  102. R. Valleta, J. Chem. Phys. 37, 67 (1962)

    Article  ADS  Google Scholar 

  103. S.N. Vaidya, M.P. Srinivasan, S.K. Malik, C.V. Tomy, D.T. Adroja, Solid State Commun. 67, 119–122 (1988)

    Article  ADS  Google Scholar 

  104. C.N.R. Rao, G.R. Rao, G.V.S. Rao, J. Solid State Chem. 6, 340 (1973)

    Article  ADS  Google Scholar 

  105. E. Salje, B. Guttler, Philos. Mag. B 50, 607–620 (1984)

    Article  ADS  Google Scholar 

  106. H. Ithara, J. Sugiyama, T. Tani, J. Appl. Phys. 43, 5134–5139 (2004)

    Article  Google Scholar 

  107. Y. Zhou, S. Matsubara, S. Horii, T. Takeuchi, R. Funahashi, M. Shikano, J. Shimoyana, K. Kishio, W. Shin, N. Izu, N. Murayama, J. Appl. Phys. 93, 2653–2658 (2003)

    Article  ADS  Google Scholar 

  108. E. Guilmeau, R. Funahashi, M. Mikami, K. Chong, D. Chateigner, Appl. Phys. Lett. 85, 1490–1492 (2004)

    Article  ADS  Google Scholar 

  109. H. Itahara, S. Tajima, T. Tani, J. Ceram. Soc. Jpn. 110, 1048–1052 (2002)

    Article  Google Scholar 

  110. H. Itahara, C. Xia, Y. Seno, J. Sugiyama, T. Tani, K. Koumoto in: 22nd International Conference on Thermoelectrics (2003)

Download references

Acknowledgments

The authors want to thank Kim Work, Michelle Wallen, Robert Fretz, Indrajit Dutta, Ron Davis, Mike Carson, Ron Parysek, Bryan Wheaton, Erica Stapleton, Teresa McDermott and Andrew Russell for materials characterization and materials processing and acknowledge Deenamma Vargheese’s and Todd St. Clair’s contributions to the larger area of this research and mention discussions and support by many other colleagues from Corning Incorporated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Backhaus-Ricoult.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Backhaus-Ricoult, M., Rustad, J., Moore, L. et al. Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation?. Appl. Phys. A 116, 433–470 (2014). https://doi.org/10.1007/s00339-014-8515-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8515-z

Keywords

Navigation