Skip to main content
Log in

Dielectric study on Zn1−x Mg x O ceramic materials prepared by the solid-state route

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present work investigates the structural and dielectric properties of Zn1−x Mg x O composites prepared by the standard sintering method at 1200 °C during 24 h and doped with different weight percentages of MgO (x = 0–40 %). For this purpose, the scanning electron microscopy (SEM) was used to study the effect of the magnesium’s proportion on the morphology and crystallinity of the obtained samples. The SEM observations have shown rougher surfaces of the samples covered by grains having prismatic shapes and different sizes. The dielectric properties of the ceramics were investigated by spectroscopic impedance at different temperatures and frequencies, thus showing a frequency-dependent dispersion of the permittivity constants and dielectric losses. From these measurements, the relaxation processes were identified and their activation energies extracted. Dielectric responses were correlated with the microstructure and chemical composition of the ZnMgO composites. The mechanisms of ac conductivity are controlled by the polaron hopping and the electron tunneling models. Concerning the tunneling model, two types corresponding to the overlapping large polaron tunneling model for the composites Zn0.9Mg0.1O and Zn0.8Mg0.2O and the small polaron tunneling model for the composites Zn0.64Mg0.36O (in the frequency range 1.7 × 104 Hz–1 MHz) and Zn0.6Mg0.4O were observed. Besides, one type of hopping model corresponding to the correlated barrier hopping for the composites ZnO and Zn0.64Mg0.36O (in the frequency range 6 × 102–1.7 × 104 Hz) was noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Singh, A. Kumar, N. Suri, S. Kumar, M. Kumar, P.K. Khanna, D. Kumar, J. Optoelectron. Adv. Mater. 11, 790–793 (2009)

    Google Scholar 

  2. J.H. Lee, C.Y. Chou, Z. Bi, C.F. Tsai, H. Wang, Nanotechnology 20, 395704 (2009)

    Article  ADS  Google Scholar 

  3. K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102(1), 1–46 (1983)

    Article  ADS  Google Scholar 

  4. W.S. Wang, T.T. Wu, T.H. Chou, Y.Y. Chen, Nanotechnology 20, 135503 (2009)

    Article  ADS  Google Scholar 

  5. A. Mitra, R.K. Thareja, J. Appl. Phys. 89, 2025 (2001)

    Article  ADS  Google Scholar 

  6. D.G. Thomas, J. Phys. Chem. Solids 15, 86–96 (1960)

    Article  ADS  Google Scholar 

  7. M. Millot, J. Gonzalez, I. Molina, B. Salas, Z. Golacki, J.M. Broto, H. Rakoto, M. Goiran, J. Alloys Compd. 423, 224–227 (2006)

    Article  Google Scholar 

  8. R.R. Zhao, X.Q. Wei, Y.J. Wang, X.J. Xu, J. Mater. Sci. Mater. Electron. 24(11), 4290–4295 (2013)

    Article  Google Scholar 

  9. K. Yoshino, S. Oyama, M. Yoneta, J. Mater. Sci. Mater. Electron. 19(2), 203–209 (2008)

    Article  Google Scholar 

  10. Z.J. Othman, A. Matoussi, F. Fabbri, F. Rossi, G. Salviati, Appl. Phys. A (2014). doi:10.1007/s00339-014-8279-5

  11. P. Kumar et al., Curr. Appl. Phys. 12, 1166 (2012)

    Article  Google Scholar 

  12. P. Kumar et al., Appl. Phys. A 114, 453 (2014)

    Article  ADS  Google Scholar 

  13. A. Ghosh, Phys. Rev. B 41, 1479–1488 (1990)

    Article  ADS  Google Scholar 

  14. A.K. Jonscher, Thin Solid Films 36, 1–20 (1976)

    Article  ADS  Google Scholar 

  15. A.N. Papathanassiou, J. Phys. D 35, 88 (2002)

    Article  ADS  Google Scholar 

  16. J.H. Li, Y.C. Liu, C.L. Shao, X.T. Zhang, D.Z. Shen, Y.M. Lu, J.Y. Zhang, X.W. Fan, J. Colloid Interface Sci. 283, 513–517 (2005)

    Article  Google Scholar 

  17. Z. Vashaei, T. Minegishi, H. Suzuki, T. Hanada, M.W. Cho, T. Yao, A. Setiawan, J. Appl. Phys. 98, 054911 (2005)

    Article  ADS  Google Scholar 

  18. S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, H. Shen, Appl. Phys. Lett. 80, 1529 (2002)

    Article  ADS  Google Scholar 

  19. S.S.N. Bharadwaja, S.B. Krupanidhi, Mater. Sci. Eng. B 78, 75–83 (2000)

    Article  Google Scholar 

  20. E.-C. Lee, Y.S. Kim, Y.G. Jin, K.J. Chang, Phys. Rev. B 64, 085120 (2001)

    Article  ADS  Google Scholar 

  21. Z. Jun-Liang, Z. Wenqing, L. Xiao-Min, F. Ji-Wei, S. Xun, J. Phys, Condens. Matter 18, 1495–1508 (2006)

    Article  ADS  Google Scholar 

  22. J.F. Cordaro, Y. Shim, J.E. May, J. Appl. Phys. 60, 4186 (1986)

    Article  ADS  Google Scholar 

  23. M. Chaari, A. Matoussi, J. Appl. Phys. A (2013). doi:10.1007/s00339-013-8199-9

    Google Scholar 

  24. Y. Shim, J.F. Cordaro, J. Am. Ceram. Soc. 71, 184–188 (1988)

    Article  Google Scholar 

  25. G. Garcia-Belmonte, J. Bisquert, F. Fabregat-Santiago, Solid State Electron. 43, 2123–2127 (1999)

    Article  ADS  Google Scholar 

  26. K.C. Kao, Dielectric Phenomena in Solids with Emphasis on Physical Concepts of Electronic Processes (Elsevier Academic Press, Amsterdam, 2004)

    Google Scholar 

  27. P. Kumar, M. Kar, J. Alloys Compd. 584, 566–572 (2014)

    Article  Google Scholar 

  28. J.P. Gambino, W.D. Kingery, G.E. Pike, H.R. Philipp, L.M. Levinson, J. Appl. Phys. 6, 2571–2574 (1987)

    Article  ADS  Google Scholar 

  29. D.R. Clarke, J. Am. Ceram. Soc. 82, 485–502 (1999)

    Article  Google Scholar 

  30. F. Greuter, Solid State Ion. 75, 67–78 (1995)

    Article  Google Scholar 

  31. Y. Ohbuchi, J. Yoshino, Y. Okamoto, J. Morimoto, Jpn. J. Appl. Phys. 38, 899–900 (1999)

    Article  ADS  Google Scholar 

  32. V. Gavryushin, G. Raciukaitis, D. Juodzbalis, A. Kazlauskas, V. Kubertavicius, J. Cryst. Growth 138, 924–933 (1994)

    Article  ADS  Google Scholar 

  33. D.L. Sidebottom, Phys. Rev. Lett. 83, 983–986 (1999)

    Article  ADS  Google Scholar 

  34. B. Roling, A. Happe, K. Funke, M.D. Ingram, Phys. Rev. Lett. 78, 2160–2163 (1997)

    Article  ADS  Google Scholar 

  35. S. Capaccioli, M. Lucchesi, P.A. Rolla, G. Ruggeri, J. Phys, Condens. Matter 10, 5595–5617 (1998)

    Article  ADS  Google Scholar 

  36. D.S. McLachlan, M.B. Heaney, Phys. Rev. B 60, 12746–12751 (1999)

    Article  ADS  Google Scholar 

  37. M.T. Connor, S. Roy, T.A. Ezquerra, F.J. Balta Calleja, Phys. Rev. B 57, 2286–2294 (1998)

    Article  ADS  Google Scholar 

  38. P. Potschke, S.M. Dudkin, I. Alig, Polymer 44, 5023–5030 (2003)

    Article  Google Scholar 

  39. F. Kremer, A. Schönails, Broadband Dielectric Spectroscopy (Springer, Heidelberg, 2002)

    Google Scholar 

  40. A.K. Jonsher, Nature 267, 673–679 (1977)

    Article  ADS  Google Scholar 

  41. G.M. Tsangaris, G.C. Psarras, E. Manolakaki, Adv. Compos. Lett. 8(1), 25–29 (1999)

    Google Scholar 

  42. S. Li, P. Cheng, J. Li, L. Zhao, Proceedings of the IEEE International Conference on Solid Dielectric, ICSD 207 (2007)

  43. A.F. Kohan, G. Ceder, D. Morgan, C.G. van de Walle, Phys. Rev. B 61, 15019–15027 (2000)

    Article  ADS  Google Scholar 

  44. E.-C. Lee, Y.S. Kim, Y.G. Jin, K.J. Chang, Phys. Rev. B 64, 085120 (2001)

    Article  ADS  Google Scholar 

  45. Z. Jun-Liang, Z. Wenqing, L. Xiao-Min, F. Ji-Wei, S. Xun, J. Phys, Condens. Matter 18, 1495–1508 (2006)

    Article  ADS  Google Scholar 

  46. M. Chaari, A. Matoussi, Phys. B 407, 3441–3447 (2012)

    Article  ADS  Google Scholar 

  47. S.R. Elliott, Adv. Phys. 36, 135–217 (1987)

    Article  ADS  Google Scholar 

  48. S.A. Mansour, I.S. Yahia, F. Yakuphanoglu, Dyes Pigm. 87, 144–148 (2010)

    Article  Google Scholar 

  49. U. Akgul, Z. Ergin, M. Sekerci, Y. Atici, Vacuum 82, 340–345 (2008)

    Article  Google Scholar 

  50. N.F. Mott, J. Non-Cryst. Solids 1, 1–17 (1968)

    Article  ADS  Google Scholar 

  51. M.H. Buraidah, L.P. Teo, S.R. Majid, A.K. Arof, Phys. B 404, 1373–1379 (2009)

    Article  ADS  Google Scholar 

  52. J.T. Gudmundsson, H.G. Svavarsson, S. Gudjonsson, H.P. Gislason, Phys. B 340–342, 324–328 (2003)

    Article  Google Scholar 

  53. T. Winie, A.K. Arof, Ionics 10, 193–199 (2004)

    Article  Google Scholar 

  54. W. Jung, Phys. B 403, 636–638 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zayani Jaafar Othman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, Z.J., Matoussi, A., Rossi, F. et al. Dielectric study on Zn1−x Mg x O ceramic materials prepared by the solid-state route. Appl. Phys. A 117, 1515–1524 (2014). https://doi.org/10.1007/s00339-014-8587-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8587-9

Keywords

Navigation