Skip to main content
Log in

Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the forced convection of a nanofluid flow in a microscale duct has been investigated numerically. The governing equations have been solved utilizing the finite volume method. Two different conjugated domains for both flow field and substrate have been considered in order to solve the hydrodynamic and thermal fields. The results of the present study are compared to those of analytical and experimental ones, and a good agreement has been observed. The effects of Reynolds number, thermal conductivity and thickness of substrate on the thermal and hydrodynamic indexes have been studied. In general, considering the wall affected the thermal parameter while it had no impact on the hydrodynamics behavior. The results show that the effect of nanoparticle volume fraction on the increasing of normalized local heat transfer coefficient is more efficient in thick walls. For higher Reynolds number, the effect of nanoparticle inclusion on axial distribution of heat flux at solid–fluid interface declines. Also, less end losses and further uniformity of axial heat flux lead to an increase in the local normalized heat transfer coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\( C_{\text{p}} \) :

Specific heat (J/kg K)

d :

Diameter

d bf :

Molecular diameter of base fluid (nm)

d h :

Hydraulic diameter (nm)

d p :

Nanoparticle diameter (nm)

h :

Heat transfer coefficient (W/m2 K)

h c :

Channel height (µm)

h c :

Channel height

k :

Thermal conductivity (W/m K)

K b :

Boltzmann’s constant

L :

Channel length

M :

The molecular weight of the base fluid

N :

Avogadro number

p :

Pressure (pa)

Pr :

Prandtl number

q :

Heat flux (W/m2)

t :

Wall thickness (µm)

T :

Temperature (K)

TR:

Thermal resistance, q/(T m,sf − T b) (k/W)

u :

Velocity (m/s)

x :

Coordinate (m)

0:

Reference condition (inlet)

1, 2:

Horizontal and vertical direction

a:

Area average

ave:

Average length

b:

Base flux

b:

Bulk

bf:

Base fluid

d :

Down

eff:

Effective

fr:

Freezing point

H2 :

Constant heat flux

k,i,j :

Indexes

max:

Maximum value

nf:

Nanofluid

p:

Particle

s:

Substrate

sf:

Solid–fluid interface

u:

Upper

w:

Wall

β :

Performance index

ε :

The rate of deformation tensor (s−1)

μ :

Dynamic viscosity (N s m−2)

ρ :

Density

τ :

The stress tensor (Pa)

φ :

Nanoparticle volume fraction

References

  1. D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI. Elect. Dev. Lett. IEEE 2(5), 126–129 (1981). doi:10.1109/EDL.1981.25367

    Article  ADS  Google Scholar 

  2. B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11(2), 151–170 (1998). doi:10.1080/08916159808946559

    Article  ADS  Google Scholar 

  3. S. Lee, S.U.S. Choi, Applications of metallic nanoparticle suspensions in advanced cooling system 342, 227–234 (1996)

    Google Scholar 

  4. Y. Xuan, Q. Li, Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transf. 125(1), 151–155 (2003)

    Article  Google Scholar 

  5. D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Transf. 47(24), 5181–5188 (2004)

    Article  Google Scholar 

  6. J. Buongiorno, Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)

    Article  Google Scholar 

  7. M. Izadi, A. Behzadmehr, D. Jalali-Vahida, Numerical study of developing laminar forced convection of a nanofluid in an annulus. Int. J. Therm. Sci. 48(11), 2119–2129 (2009)

    Article  Google Scholar 

  8. M. Izadi, A. Behzadmehr, M.M. Shahmardan, Effects of discrete source-sink arrangements on mixed convection in a square cavity filled by nanofluid. Korean J. Chem. Eng. 31(1), 12–19 (2014)

    Article  Google Scholar 

  9. M. Izadi, M.M. Shahmardan, M.J. Maghrebi, A. Behzadmehr, Numerical study of developed laminar mixed convection of Al2O3/water nanofluid in an annulus. Chem. Eng. Commun. 200(7), 878–894 (2013)

    Article  Google Scholar 

  10. R. Chein, J. Chuang, Experimental microchannel heat sink performance studies using nanofluids. Int. J. Therm. Sci. 46(1), 57–66 (2007)

    Article  Google Scholar 

  11. J.-Y. Jung, H.-S. Oh, H.-Y. Kwak, Forced convective heat transfer of nanofluids in microchannels. Int. J. Heat Mass Transf. 52(1), 466–472 (2009)

    Article  Google Scholar 

  12. C.-J. Ho, L.C. Wei, Z.W. Li, An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Appl. Therm. Eng. 30(2), 96–103 (2010)

    Article  Google Scholar 

  13. M.D. Byrne, R.A. Hart, A.K. da Silva, Experimental thermal–hydraulic evaluation of CuO nanofluids in microchannels at various concentrations with and without suspension enhancers. Int. J. Heat Mass Transf. 55(9), 2684–2691 (2012)

    Article  Google Scholar 

  14. S.A. Fazeli, S.M. Hosseini Hashemi, H. Zirakzadeh, M. Ashjaee, Experimental and numerical investigation of heat transfer in a miniature heat sink utilizing silica nanofluid. Superlattices Microstruct. 51(2), 247–264 (2012)

    Article  ADS  Google Scholar 

  15. M. Kalteh, A. Abbassi, M. Saffar-Avval, J. Harting, Eulerian-Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel. Int. J. Heat Fluid Flow 32(1), 107–116 (2011)

    Article  Google Scholar 

  16. A. Malvandi, D.D. Ganji, Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field. Int. J. Therm. Sci. 84, 196–206 (2014). doi:10.1016/j.ijthermalsci.2014.05.013

    Article  Google Scholar 

  17. B. Rimbault, C.T. Nguyen, N. Galanis, Experimental investigation of CuO–water nanofluid flow and heat transfer inside a microchannel heat sink. Int. J. Therm. Sci. 84, 275–292 (2014). doi:10.1016/j.ijthermalsci.2014.05.025

    Article  Google Scholar 

  18. A.G. Fedorov, R. Viskanta, Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging. Int. J. Heat Mass Transf. 43(3), 399–415 (2000)

    Article  MATH  Google Scholar 

  19. J. Li, G.P. Peterson, P. Cheng, Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow. Int. J. Heat Mass Transf. 47(19), 4215–4231 (2004)

    Article  MATH  Google Scholar 

  20. A. Barba, B. Musi, M. Spiga, Performance of a polymeric heat sink with circular microchannels. Appl. Therm. Eng. 26(8), 787–794 (2006)

    Article  Google Scholar 

  21. G.L. Morini, Scaling effects for liquid flows in microchannels. Heat Transfer Eng. 27(4), 64–73 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Li, G.P. Peterson, 3-Dimensional numerical optimization of silicon-based high performance parallel microchannel heat sink with liquid flow. Int. J. Heat Mass Transf. 50(15), 2895–2904 (2007)

    Article  MATH  Google Scholar 

  23. X. Wei, Y. Joshi, M.K. Patterson, Experimental and numerical study of a stacked microchannel heat sink for liquid cooling of microelectronic devices. J. Heat Transf. 129(10), 1432–1444 (2007)

    Article  Google Scholar 

  24. D. Lelea, The conjugate heat transfer of the partially heated microchannels. Heat Mass Transf. 44(1), 33–41 (2007)

    Article  ADS  Google Scholar 

  25. J.D. Mlcak, N.K. Anand, M.J. Rightley, Three-dimensional laminar flow and heat transfer in a parallel array of microchannels etched on a substrate. Int. J. Heat Mass Transf. 51(21), 5182–5191 (2008)

    Article  MATH  Google Scholar 

  26. G. Tunc, Y. Bayazitoglu, Heat transfer in microtubes with viscous dissipation. Int. J. Heat Mass Transf. 44(13), 2395–2403 (2001)

    Article  MATH  Google Scholar 

  27. H.-E. Jeong, J.-T. Jeong, Extended Graetz problem including streamwise conduction and viscous dissipation in microchannel. Int. J. Heat Mass Transf. 49(13), 2151–2157 (2006)

    Article  MATH  Google Scholar 

  28. P.M. Coelho, F.T. Pinho, Fully-developed heat transfer in annuli with viscous dissipation. Int. J. Heat Mass Transf. 49(19), 3349–3359 (2006)

    Article  MATH  Google Scholar 

  29. S. Del Giudice, C. Nonino, S. Savino, Effects of viscous dissipation and temperature dependent viscosity in thermally and simultaneously developing laminar flows in microchannels. Int. J. Heat Fluid Flow 28(1), 15–27 (2007)

    Article  Google Scholar 

  30. O. Aydın, M. Avcı, Analysis of laminar heat transfer in micro-Poiseuille flow. Int. J. Therm. Sci. 46(1), 30–37 (2007)

    Article  Google Scholar 

  31. K. Hooman, Entropy generation for microscale forced convection: effects of different thermal boundary conditions, velocity slip, temperature jump, viscous dissipation, and duct geometry. Int. Commun. Heat Mass Transfer 34(8), 945–957 (2007)

    Article  Google Scholar 

  32. S.W. Churchill, H.H.S. Chu, Correlating equations for laminar and turbulent free convection from a vertical plate. Int. J. Heat Mass Transf. 18(11), 1323–1329 (1975)

    Article  Google Scholar 

  33. M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 52(1), 789–793 (2011)

    Article  Google Scholar 

  34. Ebadian, M.A., Dong, Z.F.: Forced convection, internal flow in ducts. chapter 5 (1998)

  35. M. Kalteh, A. Abbassi, M. Saffar-Avval, A. Frijns, A. Darhuber, J. Harting, Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink. Appl. Therm. Eng. 36, 260–268 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Izadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi, M., Shahmardan, M.M., Norouzi, M. et al. Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect. Appl. Phys. A 117, 1821–1833 (2014). https://doi.org/10.1007/s00339-014-8760-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8760-1

Keywords

Navigation