Skip to main content
Log in

Frequency-dependent dielectric permittivity and electric modulus studies and an empirical scaling in (100−x)BaTiO3/(x)La0.7Ca0.3MnO3 composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have studied the dielectric permittivity and electrical modulus behavior in (100−x)BaTiO3/(x)La0.7Ca0.3MnO3 (x = 20, 30, 40, 50, 60 %) composites over a frequency range from 42 Hz to 5 MHz at room temperature. The dielectric permittivity data have been well interpreted using the Curie–Von Schweidler function adding the conduction contribution. The electric modulus data have been analyzed by invoking the decay relaxation function. Both formalisms describing a non-Debye type relaxation have been obtained in the composites. The electric modulus formalism indicates the Maxwell–Wagner–Sillars relaxation involved in the composite. In the scaled coordinate, the dielectric permittivity and electrical modulus for different x fall on a single master curve, indicating the existence of a general scaling formalism. The empirical scaling also signifies that the relaxation mechanism is independent of composition. In addition, we have proposed an Arrhenius-like equation for x-dependent dc conductivity and characteristic peak frequency in this composite system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Yan, Z. Wang, Z. Xing, J. Li, D. Viehland, J. Appl. Phys. 107, 064106 (2010)

    Article  ADS  Google Scholar 

  2. N. Benatmane, S.P. Crane, F. Zavaliche, R. Ramesh, T.W. Clinton, Appl. Phys. Lett. 96, 082503 (2010)

    Article  ADS  Google Scholar 

  3. I. Vrejoiu, M. Ziese, A. Setzer, P.D. Esquinazi, B.I. Birajdar, A. Lotnyk, M. Alexe, D. Hesse, Appl. Phys. Lett. 92, 152506 (2008)

    Article  ADS  Google Scholar 

  4. W. Jillek, W.K.C. Yung, Int. Adv. J. Manuf. Technol. 25, 350 (2005)

    Article  Google Scholar 

  5. H. Nalwa, Handbook of low and high dielectric constant materials and their applications (Academic Press, London, 1999)

    Google Scholar 

  6. Y. Rao, S. Ogitani, P. Kohl, C.P. Wong, J. Appl. Poly. Sci. 83, 1084 (2002)

    Article  Google Scholar 

  7. W. Maison, R. Kleeberg, R.B. Heimann, S. Phanichphant, J. Europ. Ceram. Soc. 23, 127 (2003)

    Article  Google Scholar 

  8. N. Izyumskaya, Y. Alivov, H. Morkoc, Crit. Rev. Solid State Mater. Sci. 34, 89 (2009)

    Article  ADS  Google Scholar 

  9. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 42, 759 (2006)

    Article  ADS  Google Scholar 

  10. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)

    Article  ADS  Google Scholar 

  11. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)

    Article  ADS  Google Scholar 

  12. J.B. Jarvis, IEEE 7, 374 (2000)

    Google Scholar 

  13. M.H. Khan, S. Pal, Adv. Mat. Lett. 5, 384 (2014)

    Google Scholar 

  14. M.H. Khan, S. Pal, E. Bose, AIP Conf. Proc. 1536, 1043 (2013)

    Article  ADS  Google Scholar 

  15. E. Tuncer, J. Phys.: Condens. Matter 17, 125 (2005)

    ADS  Google Scholar 

  16. M.H. Khan, S. Pal, E. Bose, Can. J. Phys. 91, 1029 (2013)

    Article  ADS  Google Scholar 

  17. D. Varshney, P. Sharma, S. Satapathy, P.K. Gupta, Mater. Res. Bull. 49, 345 (2014)

    Article  Google Scholar 

  18. D. Varshney, P. Sharma, S. Satapathy, P.K. Gupta, J. Alloy. Compd. 584, 232 (2014)

    Article  Google Scholar 

  19. A. Kaya, S. Altındal, Y.S. Asar, Z. Sonmez, A. Chin, Phys. Lett. 30, 017301 (2013)

    Google Scholar 

  20. L.C. Costa, F. Henry, J. Non Cryst. Solids 353, 4380 (2007)

    Article  ADS  Google Scholar 

  21. B. Lee, T. Moon, T.G. Kim, D.K. Choi, B. Park, Appl. Phys. Lett. 87, 1 (2005)

    Google Scholar 

  22. H. Choosuwan, R. Guo, A.S. Bhalla, U. Balachandran, J. Appl. Phys. 93, 2876 (2003)

    Article  ADS  Google Scholar 

  23. L. Zhang, X. Shan, P. Wu, Z.Y. Cheng, Appl. Phys. A 107, 597 (2012)

    Article  ADS  Google Scholar 

  24. L. Zhang, Z.Y. Cheng, J. Adv. Dielectr. 1, 389 (2011)

    Article  Google Scholar 

  25. C.F. Yang, C.C. Wu, C.C. Su, Y.C. Chen, Appl. Phys. A 97, 455 (2009)

    Article  ADS  Google Scholar 

  26. R. Martinez, A. Kumar, R. Palai, J.F. Scott, R.S. Katiyar, J. Phys. D Appl. Phys. 44, 105302 (2011)

    Article  ADS  Google Scholar 

  27. F. Tian, Y. Ohki, IEEE Trans. Dielectr. Electr. Insul. 21, 929 (2014)

    Article  Google Scholar 

  28. J. Belattar, M.P.F. Graça, L.C. Costa, M.E. Achour, C. Brosseau, J. Appl. Phys. 107, 124111 (2010)

    Article  ADS  Google Scholar 

  29. G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970)

    Article  Google Scholar 

  30. R. Bergman, J. Appl. Phys. 88, 1356 (2000)

    Article  ADS  Google Scholar 

  31. F. Kremer, A. Schonhals, Broadband dielectric spectroscopy (Springer, Berlin, 2003)

    Book  Google Scholar 

  32. J.S. Kim, J. Phys. Soc. Jpn. 70, 3129 (2001)

    Article  ADS  Google Scholar 

  33. Q. Li, H. Wang, H. Fan, M. Xu, B. Peng, C. Long, X. Liu, Appl. Phys. A 114, 551 (2014)

  34. D.L. Sidebottom, J. Zhang, Phys. Rev. B 62, 5503 (2000)

    Article  ADS  Google Scholar 

  35. M.H. Khan, S. Pal, E. Bose, Phys. Scr. 89, 025802 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by DST-FAST TRACK Project No-SR/FTP/PS-101/2010 Government of India. Author M. H. Khan would like to acknowledge the University for providing financial support. It is pleasure to acknowledge Dr. S. Bhattacharya, University of Kalyani, for helpful discussions and help in performing the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.H., Pal, S. & Bose, E. Frequency-dependent dielectric permittivity and electric modulus studies and an empirical scaling in (100−x)BaTiO3/(x)La0.7Ca0.3MnO3 composites. Appl. Phys. A 118, 907–912 (2015). https://doi.org/10.1007/s00339-014-8810-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8810-8

Keywords

Navigation