Skip to main content
Log in

Effect of fabrication routes on the microstructure, the dielectric and ferroelectric properties of the Mn-doped BaTiO3 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of fabrication routes on the microstructure, the dielectric and ferroelectric properties of the Mn-doped BaTiO3 ceramics was systematically studied in the present study. It can be concluded that the ways of doping manganese into BaTiO3 matrix had a strong impact on the obtained ceramics. Doping manganese after the calcination of BaTiO3 (BT + Mn) would inhibit the grain growth and cause the hexagonal BaTiO3 when sintered at 1,400 °C in the air. While doping manganese at the initial stage [BaTi(1−x)MnxO3], no hexagonal BaTiO3 is detected in the same sintering temperature. As the macroscopic properties, the dielectric properties showed permittivity diffusion with the frequency in the temperature range of −10 to 150 °C only in the ceramics fabricated by the former route (BT + Mn). Moreover, the dielectric relaxation process disappeared after aging treatment only in the ceramics fabricated by the later route [BaTi(1−x)MnxO3]. The ferroelectric properties showed strong aging effect in the sample fabricated by the latter route [BaTi(1−x)MnxO3] both with fine grain and coarse grain, while the sample fabricated by the former route (BT + Mn) showed slight aging phenomenon ever after aging at room temperature for 10 days. The electrostrain also showed big difference within different samples: The recoverable electrostrain were 0.11 % (BT + Mn) and 0.21 % [BaTi(1−x)MnxO3] at the same sintering temperature of 1,320 °C and aging in the room temperature for 10 days. Such results were analyzed from the viewpoint of the differences in solubility of manganese and the consequent manganese–oxygen vacancy defect dipoles in the different fabrication routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Rac, M. Chu, V. Ganine, Ceram. Trans. 100, 1 (1999)

    Google Scholar 

  2. T.G. Reynold, Am. Ceram. Soc. Bull. 80, 29 (2001)

    Google Scholar 

  3. I. Burn, J. Mater. Sci. 14, 2453 (1979)

    Article  ADS  Google Scholar 

  4. H.T. Langhammer, T. Miiller, A. Polity, K.H. Felgne, H.P. Abicht, Mater. Lett. 26, 205 (1996)

    Article  Google Scholar 

  5. A. Kirianov, N. Ozaki, H. Ohsato, N. Kohzu, H. Kishi, Jpn. J. Appl. Phys. 40, 5619 (2001)

    Article  ADS  Google Scholar 

  6. D.K. Lee, H.I. Yoo, K.D. Becker, Solid State Ionics 154, 189 (2002)

    Article  Google Scholar 

  7. B. Tang, S. Zhang, X. Zhou, Y. Yuan, J. Mater. Sci. Mater. Electron. 18, 541 (2007)

    Article  Google Scholar 

  8. Dennis P. Shay, Nikolas J. Podraza, Niall J. Donnelly, Clive A. Randall, J. Am. Ceram. Soc. 95, 1348 (2012)

    Article  Google Scholar 

  9. J. Jeong, Y.H. Han, J. Electroceram. 13, 549 (2004)

    Article  Google Scholar 

  10. S.I. Osawa, A. Furuzawa, N. Fujikawa, J. Am. Ceram. Soc. 76, 1191 (1993)

    Article  Google Scholar 

  11. W. Cai, C. Fu, G. Gao, X. Deng, J. Mater. Sci. Mater. Electron. 21, 317 (2010)

    Article  Google Scholar 

  12. S.H. Cha, Y.H. Han, J. Appl. Phys. 100, 104102 (2006)

    Article  ADS  Google Scholar 

  13. H. Moriwake, C.A.J. Fisher, A. Kuwabara, Jpn. J. Appl. Phys. 49, 09MC01 (2010)

    Article  Google Scholar 

  14. M.M. Vijatović Petrović, J.D. Bobić, R. Grigalaitis, B.D. Stojanović, J. Banys, Acta Phys. Pol. A 124, 155 (2013)

    Article  Google Scholar 

  15. J. Jaill, H.H. Young, J. Electroceram 13, 549 (2004)

    Article  Google Scholar 

  16. I. Burn, G.H. Maher, J. Mater. Sci. 10, 633 (1975)

    Article  ADS  Google Scholar 

  17. S.B. Desu, E.C. Subbarao, Adv. Ceram. 1, 189 (1975)

    Google Scholar 

  18. J. Rödel, G. Tomandl, J. Mater. Sci. 19, 3515 (1984)

    Article  ADS  Google Scholar 

  19. F. Batllo, E. Duverger, J.-C. Jules, J.-C. Niepce, B. Jannot, M. Maglione, Ferroelectrics 109, 113 (1990)

    Article  Google Scholar 

  20. J. Illingsworth, H.M. Al-Allak, A.W. Brinkmann, J. Woods, J. Appl. Phys. 67, 2088 (1990)

    Article  ADS  Google Scholar 

  21. D.Y. Wang, K. Umeya, J. Am. Ceram. Soc. 74, 280 (1991)

    Article  Google Scholar 

  22. Y.-C. Chen, G.-M. Lo, C.-R. Shih, L. Wu, M.-H. Chen, K.-C. Huang, Jpn. J. Appl. Phys. 33, 1412 (1994)

    Article  ADS  Google Scholar 

  23. J. Illingsworth, H.M. AlAllak, A.W. Brinkman, J. Woods, J. Appl. Phys. 67, 2088 (1990)

    Article  ADS  Google Scholar 

  24. R. Waster, T. Baiatu, K.H. Härdtl, J. Am. Ceram. Soc. 73, 1645 (1990)

    Article  Google Scholar 

  25. S.H. Yoon, C.A. Randall, K.H. Hur, J. Am. Ceram. Soc. 93, 1950 (2010)

    Google Scholar 

  26. R. Waster, R. Hagenbeck, Acta Mater. 48, 797 (2000)

    Article  Google Scholar 

  27. S. Sumita, M. Ikeda, Y. Nakano, K. Nishiyama, T. Nomura, J. Am. Ceram. Soc. 74, 2739 (1991)

    Article  Google Scholar 

  28. J.G. Dickson, L. Katz, R. Ward, J. Am. Chem. Soc. 83, 3026 (1961)

    Article  Google Scholar 

  29. L. Katz, R. Ward, Inorg. Chem. 3, 205 (1964)

    Article  Google Scholar 

  30. F. Ren, S. Ishida, S. Mineta, J. Ceram. Soc. Jpn. (Yogyo Kyokaishi) 102, 106 (1994)

    Google Scholar 

  31. H.T. Langhammer, T. Müller, A. Polity, K.-H. Felgner, H.-P. Abicht, Mater. Lett. 26, 205 (1996)

    Article  Google Scholar 

  32. J. Weiss, G. Rosenstein, J. Mater. Sci. 23, 3263 (1988)

    Article  ADS  Google Scholar 

  33. I. Burn, J. Mater. Sci. 14, 2453 (1979)

    Article  ADS  Google Scholar 

  34. H.T. Langhammer, T. Müller, K.H. Felgner, H.P. Abicht, J. Am. Ceram. Soc. 83, 605 (2000)

    Article  Google Scholar 

  35. X. Ren, Nat. Mater. 3, 91 (2004)

    Article  ADS  Google Scholar 

  36. L.X. Zhang, W. Chen, X. Ren, Appl. Phys. Lett. 85, 5658 (2004)

    Article  ADS  Google Scholar 

  37. L.X. Zhang, X. Ren, Phys. Rev. B 71, 174108 (2005)

    Article  ADS  Google Scholar 

  38. L.X. Zhang, X. Ren, Phys. Rev. B 73, 094121 (2006)

    Article  ADS  Google Scholar 

  39. H.J. Hagemann, D. Hennings, J. Am. Ceram. Soc. 64, 590 (1981)

    Article  Google Scholar 

  40. J. Daniels, K.-H. Hardtl, D. Hennings, R. Wernicke, Philips Res. Rep. 31, 487 (1976)

    Google Scholar 

  41. H. Kishi, N. Kohzu, Y. Iguchi, J. Sugino, M. Kato, H. Ohsato, T. Okuda, J. Eur. Ceram. Soc. 21, 1643 (2001)

    Article  Google Scholar 

  42. K. Albertsen, D. Hennings, O. Steigelmann, J. Electroceram. 2, 193 (1998)

    Article  Google Scholar 

  43. H. Gong, X.H. Wang, S.P. Zhang, H. Wen, L.T. Li, J. Eur. Ceram. Soc. 34, 1733 (2014)

    Article  Google Scholar 

  44. H.I. Hsiang, F.S. Yen, Y.H. Chang, J. Mater. Sci. 31, 2417 (1996)

    Article  ADS  Google Scholar 

  45. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phy. Rev. B 49, 7868 (1994)

    Article  ADS  Google Scholar 

  46. S.H. Cha, Y.H. Han, Jpn. J. Appl. Phys. 45, 7797 (2006)

    Article  ADS  Google Scholar 

  47. S.H. Cha, Y.H. Han, J. Appl. Phys. 100, 104102 (2006)

    Article  ADS  Google Scholar 

  48. W. Liu, C.A. Randall, J. Am. Ceram. Soc. 91, 3245 (2008)

    Article  Google Scholar 

  49. B.L. Cheng, J. Am. Ceram. Soc. 88, 907 (2005)

    Article  Google Scholar 

  50. G.V. Lewis, C.R.A. Catlow, R.E.W. Casslton, J. Am. Ceram. Soc. 68, 555 (1985)

    Article  Google Scholar 

  51. G.V. Lewis, C.R.A. Catlow, Radiat. Eff. Defects Solids 73, 307 (1983)

    Article  Google Scholar 

  52. W.F. Liu, L.X. Zhang, W. Chen, S.T. Li, J. Mater. Sci. Mater. Electron. 25, 510 (2014)

    Article  Google Scholar 

  53. Y.Y. Guo, Z.B. Yan, N. Zhang, W.W. Cheng, J.M. Liu, J. Mater. Sci. Mater. Electron. 107, 243 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors thank W. F. Liu, C. Zhou and Y. Wang for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Chen, W., Zhang, L. et al. Effect of fabrication routes on the microstructure, the dielectric and ferroelectric properties of the Mn-doped BaTiO3 ceramics. Appl. Phys. A 118, 931–938 (2015). https://doi.org/10.1007/s00339-014-8816-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8816-2

Keywords

Navigation