Skip to main content
Log in

Effect of TEA on photoluminescence properties of PbS nanocrystalline thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the PbS nanocrystalline thin films were prepared by chemical bath deposition method on the glass and unpolished Si(100) substrates. Triethanolamine was used as additive in the aqueous solution, which resulted in the enhancement of the luminescence of nanocrystalline PbS thin films. The introduction of triethanolamine reduced the grain size and increased the optical band gap of the PbS nanoparticles. The crystalline size of PbS films deposited at two different bath temperatures of 25 °C (PbS-25) and 40 °C (PbS-40) and at different deposition times was estimated to be around 5–50 nm by XRD analyses. The films at 60 °C (PbS-60) were prepared and studied. The structural, morphological and optical properties of the obtained films were investigated. The energy-dispersive X-ray of the typical PbS film was presented, which confirmed the formation of PbS. The mechanism of growth of the PbS crystallites at different bath temperatures was described. The confinement was reflected in absorption and photoluminescence spectra. The variation of the photoluminescence intensity of PbS nanocrystals with triethanolamine molarity, deposition time and bath temperature was investigated. The PbS thin films were found to exhibit PL in both the ultraviolet and visible regions via quantum size effects, surface states and excitation wavelength variation. The luminescence of Si(100) substrate and PbS nanocrystalline films deposited on Si(100) were compared, and the results revealed that the PbS nanocrystals altered and notably enhanced the emission features of the Si(100) substrate. The multi-peak fitting using Gaussian function was employed for the photoluminescence spectrum of PbS on Si(100) substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.Z. Zhang, Optical properties and spectroscopy of nanomaterials (World Scientific Publishing Co., Pte. Ltd., London, 2009), p. 136

    Book  Google Scholar 

  2. T. Zhang, H. Zhao, D. Riabinina, M. Chaker, D. Ma, J. Phys. Chem. C 114, 10153 (2010)

    Article  Google Scholar 

  3. C. Liu, Y.K. Kwon, J. Heo, Appl. Phys. Lett. 94, 021103 (2009)

    Article  ADS  Google Scholar 

  4. A. Abel Keith, S. Jingning, B. John-Christopher, H. Fraser, C.J.M. Van Veggel Frank, Chem. Mater. 20, 3794 (2008)

    Article  Google Scholar 

  5. S. Kaci, A. Keffous, S. Hakoum, N. Makrani, M. Kechouane, L. Guerbous, Opt. Mater. 35, 1 (2012)

    Article  ADS  Google Scholar 

  6. E. Pentia, L. Pintilie, C. Tivarus, I. Pintilie, T. Botila, Mater. Sci. Eng. B 80, 23 (2001)

    Article  Google Scholar 

  7. R.S. Mane, C.D. Lokhande, Mater. Chem. Phys. 65, 1 (2000)

    Article  Google Scholar 

  8. S.M. Pawar, B.S. Pawar, J.H. Kim, Oh-Shim Joo, C.D. Lokhande. Curr. Appl. Phys. 11, 117 (2011)

    Article  ADS  Google Scholar 

  9. G. Hodes, Phys. Chem. Chem. Phys. 9, 2181 (2007)

    Article  Google Scholar 

  10. C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M.R. Belviso, P.D. Cozzoli, A. Rizzo, G. Gigli, J. Phys. Chem. C 117(25), 13305 (2013)

    Article  Google Scholar 

  11. C. Liu, Y.K. Kwon, J. Heo, J. Non-Cryst, Solids 355, 1880 (2009)

    Google Scholar 

  12. K. Moiler, T. Bein, N. Herron, W. Mahler, Y. Wang, Inorg. Chem. 28, 2915 (1989)

    Google Scholar 

  13. Y. Wang, A. Suna, W. Mahler, R. Kasowski, J. Chem. Phys. 87, 7315 (1987)

    Article  ADS  Google Scholar 

  14. X.K. Zhao, S. Baral, R. Rolandi, J.H. Fendler, J. Am. Chem. Soc. 110(4), 1012 (1988)

    Article  Google Scholar 

  15. N. Jana, R. Thapa, R. Maity, K.K. Chattopadhyay, Physica E 40, 3121 (2008)

    Article  ADS  Google Scholar 

  16. K.C. Preetha, K.V. Murali, A.J. Ragina, K. Deepa, T.L. Remadevi, Curr. Appl. Phys. 12, 53 (2012)

    Article  ADS  Google Scholar 

  17. N.R. Mathewsa, C. Ángeles-Chávez, M.A. Cortés-Jácome, J.A. Toledo, Antonio. Electrochim. Acta 99, 76 (2013)

    Article  Google Scholar 

  18. Y. Ni, X. Wei, J. Hong, X. Ma, Mater. Res. Bull. 42, 17 (2007)

    Article  Google Scholar 

  19. M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, Polyhedron 35, 149 (2012)

    Article  Google Scholar 

  20. A.S. Obaid, M.A. Mahdi, Y. Yusof, M. Bououdina, Z. Hassan, Mater. Sci. Semicond. Process. 16, 971 (2013)

    Article  Google Scholar 

  21. S.B. Pawar, J.S. Shaikh, R.S. Devan, Y.R. Ma, D. Haranath, P.N. Bhosale, P.S. Patil, Appl. Surf. Sci. 258, 1869 (2011)

    Article  ADS  Google Scholar 

  22. S. Kaci, A. Keffous, M. Trari, O. Fellahi, H. Menari, A. Manseri, L. Guerbous, J. Lumin. 130, 1849 (2010)

    Article  Google Scholar 

  23. S. Kaci, A. Keffous, L. Guerbous, M. Trari, Thin Solid Films 520, 79 (2011)

    Article  ADS  Google Scholar 

  24. B. Ullrich, X.Y. Xiao, G.J. Brown, J. Appl. Phys. 108, 013525 (2010)

    Article  ADS  Google Scholar 

  25. G. Hodes, Chemical Solution Deposition of Semiconductor Films (Marcel Dekker, New York, 2002)

    Book  Google Scholar 

  26. S.K. Goswami, E. Oh, Mater. Lett. 117, 138 (2014)

    Article  Google Scholar 

  27. A. Phuruangrat, T. Thongtem, S. Thongtema, Mater. Lett. 63, 667 (2009)

    Article  Google Scholar 

  28. A. Osherov, M. Shandalov, V. Ezersky, Y. Golan, J. Cryst. Growth 304, 169 (2007)

    Article  ADS  Google Scholar 

  29. Y. Xiong, Y. Xia, Adv. Mater. 19, 3385 (2003)

    Article  Google Scholar 

  30. Z. Quan, C. Li, X. Zhang, J. Yang, P. Yang, C. Zhang, J. Lin, Cryst. Growth Des. 8, 2384 (2008)

    Article  Google Scholar 

  31. S.M. Lee, S.N. Cho, J. Cheon, Adv. Mater. 15, 441 (2003)

    Article  Google Scholar 

  32. S.M. Lee, Y.W. Jun, S.N. Cho, J. Cheon, J. Am. Chem. Soc. 124, 11244 (2002)

    Article  Google Scholar 

  33. M.M. Abbas, A. Ab-M, Shehab, N-A. Hassan, A-K. Al-Samuraee. Thin Solid Films 519, 4917 (2011)

    Article  ADS  Google Scholar 

  34. L. Guo, K. Ibrahim, F.Q. Liu, X.C. Ai, Q.S. Li, H.S. Zhu, Y.H. Zou, J. Lumin. 82, 111 (1999)

    Article  Google Scholar 

  35. T. Tauc, Amorphous and Liquid Semiconductor (Plenum Press, New York, 1974), p. 159

    Book  Google Scholar 

  36. S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University Press, Cambridge, UK, 1998), pp. 39–79

    Book  Google Scholar 

  37. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Sol. Energy Mater. Sol. Cells 90, 1773 (2006)

    Article  Google Scholar 

  38. P. Sagar, P.K. Shishodia, R.M. Mehra, H. Okada, A. Wakahara, A. Yoshida, J. Lumin. 126, 804 (2007)

    Article  Google Scholar 

  39. S. Ye, Y. Ye, Y. Ni, Z. Wu, J. Cryst. Growth 284, 172 (2005)

    Article  ADS  Google Scholar 

  40. W. Chen, Z. Wang, Z. Lin, L. Lin, J. Appl. Phys. 82(6), 3111 (1997)

    Article  ADS  Google Scholar 

  41. X. Wang, F. Zhao, P. Xie, S. Deng, N. Xu, H. Wang, Chem. Phys. Lett. 423, 361 (2006)

    Article  ADS  Google Scholar 

  42. K. Boldt, S. Jander, K. Hoppe, H. Weller, ACS Nano 5, 8115 (2011)

    Article  Google Scholar 

  43. G.D. Scholes, G. Rumbles, Nat. Mater. 5, 683 (2006)

    Article  ADS  Google Scholar 

  44. H. Cao, G. Wang, S. Zhang, X. Zhang, Nanotechnology 17, 3280 (2006)

    Article  ADS  Google Scholar 

  45. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd edn. (Kluwer Academic/Plenum Publishers, New York, 1999), p. 7

    Book  Google Scholar 

  46. L. Irimpan, B. Krishnan, A. Deepthy, V.P.N. Nampoori, P. Radhakrishnan, J. Phys. D: Appl. Phys. 40, 5670 (2007)

    Article  ADS  Google Scholar 

  47. J.E. Lewis, S. Wu, X.J. Jiang, Nanotechnology 21, 455402–455409 (2010)

    Article  ADS  Google Scholar 

  48. Y.Q. Wang, Y.G. Wang, L. Cao, Z.X. Cao, Appl. Phys. Lett. 83, 3474 (2003)

    Article  ADS  Google Scholar 

  49. P. Kumar, N. Saxena, R. Chandra, K. Gao, S. Zhou, A. Agarwal, F. Singh, V. Gupta, D. Kanjilal, J. Lumin. 147, 184 (2014)

    Article  Google Scholar 

  50. Y.F. Zhu, D.H. Fan, W.Z. Shen, Langmuir 24, 11131 (2008)

    Article  Google Scholar 

  51. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  ADS  Google Scholar 

  52. J.J. Peterson, T.D. Krauss, Nano Lett. 6, 510 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tavakkol Tohidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tohidi, T., Jamshidi-Ghaleh, K. Effect of TEA on photoluminescence properties of PbS nanocrystalline thin films. Appl. Phys. A 118, 1247–1258 (2015). https://doi.org/10.1007/s00339-014-8823-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8823-3

Keywords

Navigation