Skip to main content
Log in

Multi-particle FEM modeling on microscopic behavior of 2D particle compaction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the discrete random packing and various ordered packings such as tetragonal and hexagonal close packed structures generated by discrete element method and honeycomb, which is manually generated were input as the initial packing structures into the multi-particle finite element model (FEM) to study their densification during compaction, where each particle is discretized as a FEM mesh. The macro-property such as relative density and micro-properties such as local morphology, stress, coordination number and densification mechanism obtained from various initial packings are characterized and analyzed. The results show that the coupling of discrete feature in particle scale with the continuous FEM in macro-scale can effectively conquer the difficulties in traditional FEM modeling, which provides a reasonable way to reproduce the compaction process and identify the densification mechanism more accurately and realistically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.M. German, Powder Metallurgy Science, 2nd edn. (Metal Powder Industries Federation, New Jersey, 1994)

    Google Scholar 

  2. K. Yamaguchi, N. Takamura, S. Imatani, J. Mater. Process. Technol. 63, 364 (1997)

    Article  Google Scholar 

  3. A.H. Tavakoli, A. Simchi, S.M. Seyed Reihani, Compos. Sci. Technol. 65, 2094 (2005)

    Article  Google Scholar 

  4. K.T. Kim, S.C. Lee, H.S. Ryu, Mater. Sci. Eng. A 340, 41 (2003)

    Article  Google Scholar 

  5. C.A. Leon, G. Rodriguez-Ortiz, E.A. Aguilar-Reyes, Mater. Sci. Eng. A 526, 106 (2009)

    Article  Google Scholar 

  6. M.F. Moreno, C.J.R. González Oliver, Powder Technol. 206, 297 (2011)

    Article  Google Scholar 

  7. D.F. Khan, H.Q. Yin, H. Li, X.H. Qu, M. Khan, S. Ali, M.Z. Iqbal, Mater. Des. 50, 479 (2013)

    Article  Google Scholar 

  8. A.L. Gurson, J. Eng. Mater. Technol. 99, 2 (1977)

    Article  Google Scholar 

  9. E. Arzt, Acta Metall. 30, 1883 (1982)

    Article  Google Scholar 

  10. N.A. Fleck, J. Mech. Phys. Solids 43, 1409 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. P.L. Larsson, S. Biwa, B. Storåkers, Acta Mater. 44, 3655 (1996)

    Article  Google Scholar 

  12. B. Storåkers, N.A. Fleck, R.M. McMeeking, J. Mech. Phys. Solids 47, 785 (1999)

    Article  ADS  MATH  Google Scholar 

  13. R.J. Henderson, H.W. Chandler, A.R. Akisanya, C.M. Chandler, S.A. Nixon, J. Mech. Phys. Solids 49, 739 (2001)

    Article  ADS  MATH  Google Scholar 

  14. P. Ponte-Castaňeda, J. Mech. Phys. Solids 50, 759 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. M. Szanto, W. Bier, N. Frage, S. Hartmann, Z. Yosibash, Int. J. Mech. Sci. 50, 405 (2008)

    Article  MATH  Google Scholar 

  16. A.T. Procopio, A. Zavaliangos, J. Mech. Phys. Solids 53, 1523 (2005)

    Article  ADS  MATH  Google Scholar 

  17. D.C. Drucker, W. Prager, Q. Appl. Math. 10, 157 (1952)

    MATH  MathSciNet  Google Scholar 

  18. D.C. Drucker, R.E. Gibson, D.J. Henkel, Trans. ASCE 122, 338 (1957)

    Google Scholar 

  19. K.H. Roscoe, J.B. Burland, On the Generalized Stress–Strain Behavior of Wet Clay, ENG PLAST (Cambridge University Press, Cambridge, 1968)

    Google Scholar 

  20. H.A. Kuhn, C.L. Downey, Int. J. Powder Metall. 7, 15 (1971)

    Google Scholar 

  21. S. Shima, M. Oyane, Int. J. Mech. Sci. 18, 285 (1976)

    Article  Google Scholar 

  22. S. Shima, M.A.E. Saleh, Mech. Mater. 16, 73 (1993)

    Article  Google Scholar 

  23. K.T. Kim, S.W. Choi, H. Park, J. Eng. Mater. Technol. 122, 238 (2000)

    Article  Google Scholar 

  24. W. Wu, G. Jiang, R.H. Wagoner, G.S. Daehn, Acta Mater. 48, 4323 (2000)

    Article  Google Scholar 

  25. H. Chtourou, M. Guillot, A. Gakwaya, Int. J. Solids Struct. 39, 1059–1077 (2002)

  26. I.C. Sinka, J.C. Cunningham, A. Zavaliangos, Powder Technol. 133, 33 (2003)

  27. I.C. Sinka, J.C. Cunningham, A. Zavaliangos, J. Pharm. Sci. 98, 2040 (2004)

  28. X.Z. An, R.Y. Yang, K.J. Dong, R.P. Zou, A.B. Yu, Phys. Rev. Lett. 95, 205502 (2005)

    Article  ADS  Google Scholar 

  29. A.B. Yu, X.Z. An, R.P. Zou, R.Y. Yang, K. Kendall, Phys. Rev. Lett. 97, 265501 (2006)

    Article  ADS  Google Scholar 

  30. X.Z. An, R.Y. Yang, R.P. Zou, A.B. Yu, Powder Technol. 188, 102 (2008)

    Article  Google Scholar 

  31. C.L. Martin, D. Bouvard, S. Shima, J. Mech. Phys. Solids 51, 667 (2003)

    Article  ADS  MATH  Google Scholar 

  32. O. Skrinjar, P.L. Larsson, Discrete Element Modeling of Cold Compaction of Composite Powders. In: Proceeding of the 2002 World Congress on Powder Metallurgy and Particulate Materials (Orlando, FL, USA: MPIF, 2002)

  33. C.L. Martin, D. Bouvard, Acta Mater. 51, 373 (2003)

    Article  Google Scholar 

  34. C.L. Martin, D. Bouvard, Int. J. Mech. Sci. 46, 907 (2004)

    Article  MATH  Google Scholar 

  35. O. Skrinjar, P.L. Larsson, Comput. Mater. Sci. 31, 131 (2004)

  36. O. Skrinjar, P.L. Larsson, Acta Mater. 52, 1871 (2004)

  37. P. Redanz, N.A. Fleck, Acta Mater. 49, 4325 (2001)

    Article  Google Scholar 

  38. B. Harthong, J.F. Jérier, P. Dorémus, D. Imbault, F.V. Donzé, Int. J. Solids Struct. 46, 3357 (2009)

    Article  MATH  Google Scholar 

  39. C. PavanaChand, R. KrishnaKumar, Scr. Mater. 35, 767 (1996)

    Article  Google Scholar 

  40. K.H. Lee, J.M. Lee, B.M. Kim, Trans. Nonferr. Met. Soc. China 19, s68 (2009)

    Article  Google Scholar 

  41. J. Zhang, Compos. Sci. Technol. 69, 2048 (2009)

    Article  ADS  Google Scholar 

  42. B. Harthong, J.F. Jérier, V. Richefeu, B. Chareyre, P. Dorémus, D. Imbault, F.V. Donzé, Int. J. Mech. Sci. 61, 32 (2012)

    Article  Google Scholar 

  43. C. Shang, I.C. Sinka, J. Pan, Exp. Mech. 52, 903 (2012)

    Article  Google Scholar 

  44. A.T. Procopio, A. Zavaliangos, J. Mech. Phys. Solids 53, 1523 (2005)

    Article  ADS  MATH  Google Scholar 

  45. Y.C. Cai, H.H. Zhu, X.Y. Zhuang, Front. Struct. Civ. Eng. 7, 369 (2013)

    Article  Google Scholar 

  46. X.Z. An, F. Huang, AIP Conf. Proc. 1542, 413 (2013)

    Article  ADS  Google Scholar 

  47. R.M. German, Particle Packing Characteristics (Metal Powder Industries Federation, Princeton, 1989)

    Google Scholar 

  48. M. Oda, K. Iwashita, Mechanics of Granular Materials: An Introduction (Taylor & Francis Group, 1999)

  49. J.L. Finney, Proc. R. Soc. Lond. A Math. Phys. Sci. 319, 479 (1970)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to the financial support of National Natural Science Foundation of China (No. 50974040), China New Century Excellent Talent Funds (NCET-10-0300), and Fundamental research funds for the Central Universities of China (N120202001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Z. An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.X., An, X.Z. & Zhang, Y.L. Multi-particle FEM modeling on microscopic behavior of 2D particle compaction. Appl. Phys. A 118, 1015–1021 (2015). https://doi.org/10.1007/s00339-014-8861-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8861-x

Keywords

Navigation