Skip to main content
Log in

Synthesis and microwave absorption properties of graphene/nickel composite materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Graphene/nickel composite materials were successfully prepared via a one-step in situ reduction from nickel chloride, graphene oxide, and hydrazine at 80 °C for 3 h. Face-centered cubic Ni nanostructures with uniform size and high dispersion assembled on graphene sheets. Through the measurement of complex relative permittivity and permeability, their microwave absorption properties were evaluated. In comparison with pure Ni nanoparticles and graphene, the composite materials demonstrated much better characteristics of microwave absorption. The lowest reflection loss value of the composites with a thickness of 3 mm can reach −23.3 dB at 7.5 GHz. Our research reveals that graphene/Ni composites are promising microwave absorption materials with desirable absorption properties and reduced material weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.B. Kong, Z.W. Li, L. Liu, R. Huang, M. Abshinova, Z. Yang, C. Tang, P. Tan, C. Deng, S. Matitsine, Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 58, 203 (2013)

    Article  Google Scholar 

  2. Z. Guo, S.E. Lee, H. Kim, S. Park, H.T. Hahn, A.B. Karki, D.P. Young, Fabrication, characterization and microwave properties of polyurethane nanocomposites reinforced with iron oxide and barium titanate nanoparticles. Acta Mater. 57, 267 (2009)

    Article  Google Scholar 

  3. P. Toneguzzo, G. Viau, O. Acher, F. Fiévet-Vincent, F. Fiévet, Monodisperse ferromagnetic particles for microwave applications. Adv. Mater. 10, 1032 (1998)

    Article  Google Scholar 

  4. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132 (2009)

    Article  Google Scholar 

  5. P. Avouris, C. Dimitrakopoulos, Graphene: synthesis and applications. Mater. Today 15, 86 (2012)

    Article  Google Scholar 

  6. A.K. Geim, Random walk to graphene. Int. J. Mod. Phys. B 25, 4055 (2011)

    Article  ADS  Google Scholar 

  7. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  8. C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98, 072906 (2011)

    Article  ADS  Google Scholar 

  9. Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, Y. Chen, Room-temperature ferromagnetism of graphene. Nano Lett. 9, 220 (2008)

    Article  ADS  Google Scholar 

  10. C. Qiang, J. Xu, Z. Zhang, L. Tian, S. Xiao, Y. Liu, P. Xu, Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles. J. Alloy. Compd. 506, 93 (2010)

    Article  Google Scholar 

  11. Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotube−polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5, 2131 (2005)

    Article  ADS  Google Scholar 

  12. T. Chen, F. Deng, J. Zhu, C. Chen, G. Sun, S. Ma, X. Yang, Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J. Mater. Chem. 22, 15190 (2012)

    Article  Google Scholar 

  13. X. Bai, Y. Zhai, Y. Zhang, Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 115, 11673 (2011)

    Article  Google Scholar 

  14. R. Bajpai, S. Roy, N. kulshrestha, J. Rafiee, N. Koratkar, D.S. Misra, Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells. Nanoscale 4, 926 (2012)

    Article  ADS  Google Scholar 

  15. P. Bhattacharya, S. Dhibar, G. Hatui, A. Mandal, T. Das, C.K. Das, Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: a potential candidate for electromagnetic wave absorbing and energy storage device applications. RSC Adv. 4, 17039 (2014)

    Article  Google Scholar 

  16. D. Chen, H. Quan, G.-S. Wang, L. Guo, Hollow α-MnS spheres and their hybrids with reduced graphene oxide: synthesis, microwave absorption, and lithium storage properties. ChemPlusChem 78, 843 (2013)

    Article  Google Scholar 

  17. Z. Ji, X. Shen, G. Zhu, H. Zhou, A. Yuan, Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. J. Mater. Chem. 22, 3471 (2012)

    Article  Google Scholar 

  18. B. Li, H. Cao, J. Yin, Y.A. Wu, J.H. Warner, Synthesis and separation of dyes via Ni@reduced graphene oxide nanostructures. J. Mater. Chem. 22, 1876 (2012)

    Article  Google Scholar 

  19. Y. Ren, C. Zhu, S. Zhang, C. Li, Y. Chen, P. Gao, P. Yang, Q. Ouyang, Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties. Nanoscale 5, 12296 (2013)

    Article  ADS  Google Scholar 

  20. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  21. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nano 3, 101 (2008)

    Article  Google Scholar 

  22. K.H. Kim, Y.B. Lee, S.G. Lee, H. Park, S.S. Park, A chemical route to large-scale preparation of spherical and monodisperse Ni powders. Mater. Sci. Eng. A 381, 337 (2004)

    Article  Google Scholar 

  23. J.-Y. Choi, Y.-K. Lee, S.-M. Yoon, H.C. Lee, B.-K. Kim, J.M. Kim, K.-M. Kim, J.-H. Lee, Preparation of fine nickel powders in aqueous solution under wet chemical process. J. Am. Ceram. Soc. 88, 3020 (2005)

    Article  Google Scholar 

  24. E. Abdel-Aal, S. Malekzadeh, M. Rashad, A. El-Midany, H. El-Shall, Effect of synthesis conditions on preparation of nickel metal nanopowders via hydrothermal reduction technique. Powder Technol. 171, 63 (2007)

    Article  Google Scholar 

  25. X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, H. Xue, Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 1, 765 (2013)

    Article  Google Scholar 

  26. P.-B. Liu, Y. Huang, X. Sun, Excellent electromagnetic absorption properties of poly (3, 4-ethylenedioxythiophene)-reduced graphene oxide–co3o4 composites prepared by a hydrothermal method. ACS Appl. Mater. Interfac. 5, 12355 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (51172113 and 51373086), the International Science and Technology Cooperation Program of China (2014DFA60150), the Shandong Natural Science Foundation (JQ201118), the Taishan Overseas Scholar program from the Shandong Province Government, PR China, and the Qingdao Municipal Science and Technology Commission (12-1-4-136-hz). We thank to Jianhua Yu, Hongzhou Dong, Qianqian Zhu, and Dong Chen for their help in some experiments and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yu, M., Zhang, W. et al. Synthesis and microwave absorption properties of graphene/nickel composite materials. Appl. Phys. A 118, 1053–1058 (2015). https://doi.org/10.1007/s00339-014-8873-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8873-6

Keywords

Navigation