Skip to main content
Log in

Modelling of degradation/recovery phenomena in CdS/CdTe ultrathin film solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The degradation/recovery phenomena in ultrathin film solar cells based on CdS/CdTe are theoretically analysed using Sah–Noyce–Shockley theory for generation and recombination in the depletion region. This theory can explain the overlap of the depletion regions at both front and back contacts where the carrier generation and collection are as important as recombination mechanism. The value of physical parameters such as uncompensated defect density, carrier recombination lifetime and band bending at interface are critically important when reducing the thickness of CdTe layer down to sub-micron. The rollover, materials inter-/out-diffusion, complex defect formation and the role of mobile ions are taken into consideration to obtain an insight into the physics of degradation/recovery phenomena in ultrathin CdTe film solar cells. Both mechanisms are precisely analysed drawing the schematics of the energy band diagrams and mobile ions transport paths which in this case is the grain interior. This means that we neglect the metal diffusion through the grain boundaries which are assumed to be completely passivated. This assumption enabled us to study the role of the defects on the carrier transport in the interiors rather than through the boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V.G. Karpov, M.L.C. Cooray, D. Shvydka, Appl. Phys. Lett. 89(16), 163518 (2006)

    Article  ADS  Google Scholar 

  2. L.A. Kosyachenko, T. Toyama, Sol. Energy Mater. Sol. Cells 120, 512–520 (2014)

    Article  Google Scholar 

  3. I.V. Fisher, K.D. Dobson, G. Hodes, D. Cahen, Adv. Funct. Mater. 13, 289–299 (2003)

    Article  Google Scholar 

  4. N. Paudel, K. Wieland, M. Young, S. Asher, A. Compaan, Prog. Photovolt. Res. Appl. 22, 107–114 (2014)

    Article  Google Scholar 

  5. V. Plotnikov, X. Liu, N. Paudel, K. Wieland, A. Compaan, Thin Solid Films 519, 7134–7137 (2011)

    Article  ADS  Google Scholar 

  6. S. Hegedus, D. Desai, D. Ryan, B. McCandless, in Proceedings of 31th IEEE Conference, (2005), pp. 319–322

  7. L.A. Kosyachenko, O. Maslyanchuk, V. Sklyarchuk, J. Appl. Phys. 101(1), 013704 (2007)

    Article  ADS  Google Scholar 

  8. D. Regesch, L. Gutay, J. Larsen, D. Tanaka, Y. Aida, S. Siebentritt, Appl. Phys. Lett. 101, 112108 (2012)

    Article  ADS  Google Scholar 

  9. V. Plotnikov, C. Carter, N. Paudel, A. Compaan, in Proceedings of 39th IEEE Conference, (2013), pp. 0405–0408

  10. N.E. Gorji, Phys. B 431, 44–48 (2013)

    Article  ADS  Google Scholar 

  11. L.A. Kosyachenko, O.L. Maslyanchuk, V.M. Sklyarchuk, Sol Energy Mater. Sol. Cells 82, 65–73 (2004)

    Article  Google Scholar 

  12. C. Sah, R. Noyce, W. Shockley, Proc. IRE 46, 1228–1243 (1957)

    Article  Google Scholar 

  13. L.A. Kosyachenko, X. Mathew, V.V. Motushchuk, V.M. Sklyarchuk, Sol. Energy 80, 148–155 (2006)

    Article  ADS  Google Scholar 

  14. M. Hadrich, C. Heisler, U. Reislohner, C. Kraft, H. Metzner, Thin Solid Films 519, 7156–7159 (2011)

    Article  ADS  Google Scholar 

  15. N.R. Paudel, K.A. Wieland, A.D. Compaan, Sol. Energy Mater. Sol. Cells 105, 109–112 (2012)

    Article  Google Scholar 

  16. A. Gupta, V. Parikh, A.D. Compaan, Sol. Energy Mater. Sol. Cells 90, 2263–2271 (2006)

    Article  Google Scholar 

  17. T.J. McMahon, A. L. Fahrenbruch, in Proceedings of 28th IEEE Conference (Anchorage, 2000) pp. 539–542

  18. K.D. Dobson, I. Visoly-Fisher, G. Hodes, D. Cahen, Sol. Energy Mater. Sol. Cells 62, 295–325 (2000)

    Article  Google Scholar 

  19. D.T. Morgan, in M.Sc. Thesis: An Investigation into Degradation of CdTe Solar Cells (Colorado School of Mines, Colorado)

  20. N.E. Gorji, Appl. Phys. A, 116(3), 1347–1352 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  21. D. Grecu, A.D. Compaan, D. Young, U. Jayamaha, D.H. Rose, J. Appl. Phys. 88(5), 2490 (2000)

    Article  ADS  Google Scholar 

  22. D.S. Albin, J.A. del Cueto, in IEEE Conference on Reliability Phyics. (IRPS) (Anaheim, 2010) pp. 318–322

  23. T.D. Dzhafarov, S.S. Yesilkaya, N.Y. Canli, M. Caliskan, Sol. Energy Mater. Sol. Cells 85, 371–383 (2005)

    Article  Google Scholar 

  24. I.M. Dharmadasa, Advances in Thin Film Solar Cells (Pan Stanford Publishing, Berkeley, 2013)

    Google Scholar 

  25. N.R. Paudel, A. Compaan, Y. Yan, J. Electron. Mater. 15 (2014), 43(8), pp. 2783–2787

  26. S. Mahmood, M.Z. Kabir, O. Tousignant, J. Greenspan, IEEE Trans. Nuc. Sci. 59(3), 597 (2012)

    Article  ADS  Google Scholar 

  27. S.M. Arnab, M.Z. Kabir, J. Vac. Sci. Technol. A 31(6), 061201 (2013)

    Article  Google Scholar 

  28. N.E. Gorji, IEEE Trans. Device Mater. Reliab. 14(4), 983–988 (2014)

    Article  Google Scholar 

  29. D. Grecu, A.D. Compaan, Appl. Phys. Lett. 75(3), 361 (1999)

    Article  ADS  Google Scholar 

  30. D. Krasikov, A. Knizhnik, B. Potapkin, S. Selezneva, T. Sommerer, Thin Solid Films 535, 322–325 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima E. Gorji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorji, N.E. Modelling of degradation/recovery phenomena in CdS/CdTe ultrathin film solar cells. Appl. Phys. A 119, 275–284 (2015). https://doi.org/10.1007/s00339-014-8961-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8961-7

Keywords

Navigation