Skip to main content

Advertisement

Log in

Water-dispersible silver nanoparticles-decorated carbon nanomaterials: synthesis and enhanced antibacterial activity

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In recent years, a growing number of outbreak of infectious diseases have emerged all over the world. The outbreak of re-emerging and emerging infectious diseases is a considerable burden on global economies and public health. Nano-antimicrobials have been studied as an effective solution for the prevention of infectious diseases. In this work, we demonstrated a modified photochemical approach for the preparation of carbon nanotubes–silver nanoparticles (CNTs–Ag) and graphene oxide–silver nanoparticles (GO–Ag) nanocomposites, which can be stably dispersible in aqueous solution. The formation of silver nanoparticles (Ag-NPs) on the functionalized CNTs and GO nanosheets was analyzed by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and UV–Vis measurements. These analyses indicated that the average particle sizes of Ag-NPs deposited on GO/CNTs nanostructures were ~6–7 nm with nearly uniform size distribution. Moreover, these nanocomposites were found to exhibit enhanced antibacterial activity against two strains of infectious bacteria including Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria as compared to bare Ag-NPs. Our obtained studies showed a high potential of GO–Ag and CNTs–Ag nanocomposites as effective and long-term disinfection solution to eliminate infectious bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. World Health Organization, Global report for research on infectious diseases of poverty (2012)

  2. F. Marinelli, O. Genilloud (eds.), Antimicrobial: new and old molecules in the fight against multi-resistant bacteria (Springer, Berlin, Heidelberg, 2014)

    Google Scholar 

  3. Mahendra Rai (ed.), Nano-antimicrobials: progress and prospects (Springer, Berlin, Heidelberg, 2012)

    Google Scholar 

  4. S. Chernousova, M. Epple, Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 52, 1636 (2013)

    Article  Google Scholar 

  5. M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83 (2009)

    Article  Google Scholar 

  6. D. Pathak, T. Wagner, J. Šubrt, J. Kupcik, Characterization of mechanically synthesized AgInSe2 nanostructures. Can. J. Phys. 92, 789 (2014)

    Article  ADS  Google Scholar 

  7. D. Pathak, R.K. Bedi, D. Kaur, Characterization of Ag-films deposited by hot wall vacuum evaporation method. Mater. Manuf. Process. 25, 1012 (2010)

    Article  Google Scholar 

  8. S. Yu, Y. Yin, J. Liu, Silver nanoparticles in the environment. Environ. Sci. Process. Impacts 15, 78 (2013)

    Article  Google Scholar 

  9. Q.H. Tran, V.Q. Nguyen, A.T. Le, Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 033001 (2013)

    Article  ADS  Google Scholar 

  10. X. Zhang, H. Niu, J. Yan, Y. Cai, Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp. 375, 186 (2011)

    Article  Google Scholar 

  11. R. Prucek et al., The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32, 4704 (2011)

    Article  Google Scholar 

  12. W. Ping, X.C. Zhang, J.P. Li, Y. Lu, H.H. Li, Y.N. Ma, W.D. Wang, S.H. Yu, Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J. Mater. Chem. 21, 4593 (2011)

    Article  Google Scholar 

  13. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes. Chem. Rev. 106, 1105 (2006)

    Article  Google Scholar 

  14. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228 (2010)

    Article  Google Scholar 

  15. W. Yuan, G. Jiang, J. Che, X. Qi, R. Xu, M.W. Chang, Y. Chen, S.Y. Lim, J. Dai, M.C. Park, Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly(amidoamine) and their antimicrobial effects. J. Phys. Chem. C 112, 18754 (2008)

    Article  Google Scholar 

  16. A.B. Castle, E.G. Espino, C.N. Delgado, H. Terrones, M. Terrones, S. Hussain, Hydroxyl-functionalized and N-doped multiwalled carbon nanotubes decorated with silver nanoparticles preserve cellular function. ACS Nano 5, 2458 (2011)

    Article  Google Scholar 

  17. A. Niu, Y. Han, J. Wu, N. Yu, Q. Xu, Synthesis of one-dimensional carbon nanomaterials wrapped by silver nanoparticles and their antibacterial behavior. J. Phys. Chem. C 114, 12728 (2010)

    Article  Google Scholar 

  18. M.R. Das, R.K. Sarma, R. Saikia, V.S. Kale, M.V. Shelke, P. Sengupta, Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf. B Biointerface 83, 16 (2011)

    Article  Google Scholar 

  19. Q. Bao, D. Zhang, P. Qi, Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J. Colloid Interface Sci. 360, 463 (2011)

    Article  Google Scholar 

  20. S.W. Chook, C.H. Chia, S. Zakaria, M.K. Ayob, K.L. Chee, N.M. Huang, H.M. Neoh, H.N. Lim, R. Jamal, R. Rahman, Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method. Nanoscale Res. Lett. 7, 541 (2012)

    Article  ADS  Google Scholar 

  21. V.H. Nguyen, B.K. Kim, Y.L. Jo, J.J. Shim, Preparation and antibacterial activity of silver nanoparticles-decorated graphene composite. J. Supercrit. Fluids 72, 28 (2012)

    Article  Google Scholar 

  22. J.D. Kim, H. Yun, G.C. Kim, C.W. Lee, H.C. Choi, Antibacterial activity and reusability of CNT–Ag and GO–Ag nanocomposites. Appl. Surf. Sci. 283, 227 (2013)

    Article  ADS  Google Scholar 

  23. M.R. Das, R.K. Sarma, S.C. Borah, R. Kumari, R. Saikia, A.B. Deshmukh, M.V. Shelke, P. Sengupta, S. Szunerits, R. Boukherroub, The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloids Surf. B Biointerface 105, 128 (2013)

    Article  Google Scholar 

  24. N.T. Lan, N.D. Dung, N. Tu, P.T. Huy, Synthesis of graphene oxide by a modified Hummer method. Vietnam J. Chem. 51, 719 (2013)

    Google Scholar 

  25. N.T. Lan et al., Photochemical decoration of silver nanoparticles on graphene oxide nanosheets and their optical characterization. J. Alloys Comp. 615, 843 (2014)

    Article  Google Scholar 

  26. A.T. Le, L.T. Tam, P.D. Tam, P.T. Huy, T.Q. Huy, N.V. Hieu, A.A. Kudrinskiy, Y.A. Krutyakov, Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity. Mater. Sci. Eng. C 30, 910 (2010)

    Article  Google Scholar 

  27. A.T. Le, P.T. Huy, L.T. Tam, P.D. Tam, N.V. Hieu, T.Q. Huy, Novel silver nanoparticles: synthesis, properties and applications. Int. J. Nanotechnol. 8, 278 (2011)

    Article  ADS  Google Scholar 

  28. M. Sakamoto, M. Fujistuka, T. Majima, Light as construction tool of metal nanoparticles: synthesis and mechanism. J. Photochem. Photobiol. C Photochem. Rev. 10, 33 (2009)

    Article  Google Scholar 

  29. J.H. Jung, G.B. Hwang, J.E. Lee, G.N. Bae, Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir 27, 10256 (2011)

    Article  Google Scholar 

  30. P. Gunawan et al., Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control. ACS Nano 5, 10033 (2011)

    Article  Google Scholar 

  31. S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, T. Pal, Silver Nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion. ACS Appl. Mater. Interfaces 5, 8724 (2013)

    Article  Google Scholar 

  32. E.K. Jeon, E. Seo, E. Lee, W. Lee, M.K. Um, B.S. Kim, Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications. Chem. Commun. 49, 3392 (2013)

    Article  Google Scholar 

  33. M.J. Hajipour et al., Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499 (2012)

    Article  Google Scholar 

  34. O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4, 5731 (2010)

    Article  Google Scholar 

  35. S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971 (2011)

    Article  Google Scholar 

  36. W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, C. Fan, Graphene-based antibacterial paper. ACS Nano 4, 4317 (2010)

    Article  Google Scholar 

  37. S. Liu, A. Keong, R. Xu, J. Wei, C.M. Tan, Y. Yanga, Y. Chen, Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale 2, 2744 (2010)

    Article  ADS  Google Scholar 

  38. B. Wu, Y. Kuang, X. Zhang, J. Chen, Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications. Nano Today 6, 75 (2011)

    Article  Google Scholar 

  39. M. Baro, P. Nayak, T.T. Baby, S. Ramaprabhu, Green approach for the large-scale synthesis of metal/metal oxide nanoparticle decorated multiwalled carbon nanotubes. J. Mater. Chem. A 1, 482 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Vietnam’s National Foundation for Science and Technology Development (NAFOSTED) through a fundamental research project (code: 103.44-2012.60). The authors would like to thank Prof. P.T. Huy at AIST for providing GO samples. Also, the technical supports for TEM and biological measurements at National Institute of Hygiene and Epidemiology are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh-Tuan Le.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, N.X., Chi, D.T., Lan, N.T. et al. Water-dispersible silver nanoparticles-decorated carbon nanomaterials: synthesis and enhanced antibacterial activity. Appl. Phys. A 119, 85–95 (2015). https://doi.org/10.1007/s00339-014-8962-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8962-6

Keywords

Navigation