Skip to main content
Log in

UV-A light-induced photodegradation of Acid Blue 113 in the presence of Sm-doped ZnO nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this report, optical and photocatalytic degradation of Acid Blue 113 (AB 113) has been investigated in an aqueous heterogeneous media containing pure and Sm-doped ZnO nanostructures which were prepared by a simple wet chemical route. X-ray diffraction measurement confirmed that the prepared nanostructures were in hexagonal wurtzite structure and the dopant Sm ion was incorporated into the Zn lattice. Interesting morphological changes involving a nanosheet-star-spherical transition were observed upon Sm doping and annealing, which were identified through transmission electron microscope. Optical absorption measurements showed an exciton absorption band and a band gap narrowing with respect to the Sm concentrations. The photodegradation of Acid Blue 113 under UV-A radiation by using pure and Sm-doped ZnO nanostructures showed that samarium played an important role in the significant improvement of the photodegradation efficiency and the optimum amount of Sm ion was found to be 1 mmol %. Further, the possible degradation mechanism was proposed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.D. Steiner, Semiconductor nanostructures for optoelectronic applications (Artech House Inc., London, 2004). (ISBN: 1-58053-751)

    Google Scholar 

  2. S. Wright, W. Lim, D.P. Norton, S.J. Pearton, F. Ren, J.L. Johnson, A. Ural, Semicond. Sci. Technol. 25, 024002 (2010)

    Article  ADS  Google Scholar 

  3. G. Zhang, S. Finefrock, D. Liang, G.G. Yadav, H. Yang, H. Fang, Y. Wu, Nanoscale 3, 2430 (2011)

    Article  ADS  Google Scholar 

  4. Y. Lin, G. Yuan, R. Liu, S. Zhou, S.W. Sheehan, D. Wang, Chem. Phys. Lett. 507, 209 (2011)

    Article  ADS  Google Scholar 

  5. A. Kolmakov, M. Moskovits, Annu. Rev. Mater. Res. 34, 151 (2004)

    Article  ADS  Google Scholar 

  6. Z.L. Wang, Appl. Phys. A 88, 7 (2007)

    Article  ADS  Google Scholar 

  7. A.B. Djurisic, Y.H. Leung, Small 2, 944 (2006)

    Article  Google Scholar 

  8. C.X. Xu, X.W. Sun, B.J. Chen, P. Shum, S. Li, X. Hu, J. Appl. Phys. 95, 661 (2004)

    Article  ADS  Google Scholar 

  9. I.G. Valls, M.L. Cantu, Energy Environ. Sci. 2, 19 (2009)

    Article  Google Scholar 

  10. Z.L. Wang, J. Phys.: Condens. Matter 16, R829 (2004)

    ADS  Google Scholar 

  11. A.B. Djurisic, Y.H. Leunga, A.M.C. Ng, Mater. Horiz. 1, 400 (2014)

    Article  Google Scholar 

  12. M. Mittal, M. Sharma, O.P. Pandey, Sol. Energy 110, 386 (2014)

    Article  ADS  Google Scholar 

  13. L. Yu, W. Chen, D. Li, J. Wang, Y. Shao, M. He, P. Wang, X. Zheng, Appl. Catal. B 164, 453 (2015)

    Article  Google Scholar 

  14. H.M. Chiu, T.H. Yang, Y.C. Hsueh, T.P. Perng, J.M. Wu, Appl. Catal. B 163, 156 (2015)

    Article  Google Scholar 

  15. F. Kayaci, S. Vempati, C.O. Akguna, N. Biyikli, T. Uyar, Appl. Catal. B 156–157, 173 (2014)

    Article  Google Scholar 

  16. A.S. Weber, A.M. Grady, R.T. Koodali, Catal. Sci. Technol. 2, 683 (2012)

    Google Scholar 

  17. J.C. Sin, S.M. Lam, K.T. Lee, A.R. Mohamed, J. Colloid. Inter. Sci. 401, 40 (2013)

    Article  Google Scholar 

  18. A. Neren, Ökte. Appl. Catal. A 475, 27 (2014)

    Article  Google Scholar 

  19. Y. Zhou, S.X. Lu, W.G. Xu, Environ. Prog. Sustain. Energy 28, 226 (2009)

    Article  Google Scholar 

  20. Z. Zhao, J.L. Song, J.H. Zheng, J.S. Lian, Trans. Nonferrous Met. Soc. China 24, 1434 (2014)

    Article  Google Scholar 

  21. O. Yayapao, T. Thongtem, A. Phuruangrat, S. Thongtem, J. Alloys. Compd. 576, 72 (2013)

    Article  Google Scholar 

  22. M. Khatamian, A.A. Khandar, B. Divband, M. Haghighi, S. Ebrahimiasl, J. Mol. Catal. A 365, 120 (2012)

    Article  Google Scholar 

  23. G. Shen, J.H. Cho, J.K. Yoo, G.-C. Yi, C.J. Lee, J. Phys. Chem. B 109, 5491 (2005)

    Article  Google Scholar 

  24. M. Bizarro, M. Bizarro, A. Sánchez-Arzate, I. Gardu˜no-Wilches, J.C. Alonso, A. Ortiz, Catal. Today 166, 129 (2011)

    Article  Google Scholar 

  25. J.C. Sin, S.M. Lam, K.T. Lee, A.R. Mohamed, Ceram. Inter. 39, 5833 (2013)

    Article  Google Scholar 

  26. W. Ma, R. Ma, J. Liang, C. Wang, X. Liu, K. Zhou, T. Sasakia, Nanoscale 6, 13870 (2014)

    Article  ADS  Google Scholar 

  27. J. Demel, J. Hynek, P. Kovaŕ, Y. Dai, C.T. Gueho, O. Demel, M. Pospísil, K. Lang, J. Phys. Chem. C 118, 27131 (2014)

    Article  Google Scholar 

  28. C.C. Lin, S.L. Young, C.Y. Kung, L. Horng, H.Z. Chen, M.C. Kao, Y.T. Shih, C.R. Ou, Vacuum 87, 178–181 (2013)

    Article  ADS  Google Scholar 

  29. C. Suryanarayana, M. Grant Norton, X-ray diffraction: a practical approach (Plenum Press, New York, 1998), p. 213

    Book  Google Scholar 

  30. B. Karthikeyan, C.S. Suchand Sandeep, T. Pandiyarajan, P. Venkatesan, R. Philip, Appl. Phys. Lett. 95, 023118 (2009)

    Article  ADS  Google Scholar 

  31. Y.H. Cho, T.J. Kim, Y.J. Park, H.J. Im, K. Song, J. Lumin. 130, 280 (2010)

    Article  Google Scholar 

  32. D. Raouf, J. Lumin. 134, 213 (2013)

    Article  Google Scholar 

  33. X. Wang, F. Zhao, P. Xie, S. Deng, N. Xu, H. Wang, Chem. Phys. Lett. 423, 361 (2006)

    Article  ADS  Google Scholar 

  34. T. Pandiyarajan, M.L. Baesso, B. Karthikeyan, Eur. Phys. J. D 68, 28 (2014)

    Article  ADS  Google Scholar 

  35. H. Noei, H. Qiu, Y. Wang, E. Loffler, C. Woll, M. Muhler, Phys. Chem. Chem. Phys. 10, 7092 (2008)

    Article  Google Scholar 

  36. C.G. Silva, M.J. Sampaio, S.A.C. Carabineiro, J.W.L. Oliveira, D.L. Baptista, R. Bacsa, B.F. Machado, P. Serp, J.L. Figueiredo, A.M.T. Silva, J.L. Faria, J. Catal. 316, 182 (2014)

    Article  Google Scholar 

  37. N.R. Panda, B.S. Acharya, P. Nayak, B.P. Bag, Ultrason. Sonochem. 21, 582 (2014)

    Article  Google Scholar 

  38. M. Bizarro, Appl. Catal. B 97, 198 (2010)

    Article  Google Scholar 

  39. A. van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Phys. Chem. B 104, 1715 (2000)

    Article  Google Scholar 

  40. A.R. Khataee, A. Karimi, R.D.C. Soltani, M. Safarpour, Y. Hanifehpour, S.W. Joo, Appl. Catal. A 488, 160 (2014)

    Article  Google Scholar 

  41. J.C. Sin, S.M. Lam, K.T. Lee, A.R. Mohamed, Ceram. Inter. 40, 5431 (2014)

    Article  Google Scholar 

  42. M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, W. Ahmed, Appl. Surf. Sci. 274, 273 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the FONDECYT Postdoctoral Project No.: 3140178 and FONDECYT No.: 1130916, Government of Chile, Santiago, for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thangaraj Pandiyarajan or Ramalinga Viswanathan Mangalaraja.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandiyarajan, T., Mangalaraja, R.V., Karthikeyan, B. et al. UV-A light-induced photodegradation of Acid Blue 113 in the presence of Sm-doped ZnO nanostructures. Appl. Phys. A 119, 487–495 (2015). https://doi.org/10.1007/s00339-015-9102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9102-7

Keywords

Navigation