Skip to main content
Log in

EAM potentials for BCC, FCC and HCP metals with farther neighbor atoms

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The modified analytic embedded atom method (EAM) theory considering farther neighbor atoms is improved. We not only adopt an end processing function and an enhanced smooth continuous condition of the pair potential, but also adjust model parameters of multi-body potential by fitting cohesion energies, mono-vacancy formation energies, Rose equation curves, energy differences between several structures, elastic parameters and the equilibrium conditions of crystals. The calculation results of structure energy differences misfit the experiment data for several metallic materials in the unimproved EAM, because its model parameters have not considered these differences. After the modification, the coincidence degree of the structure energy—the reduced distance r/r 1 from the present model with that from the Rose equation is greatly improved for Cr. The calculated results of structure stabilities are in good agreement with experiment data and other calculated results for all considered metals, significantly better than the unimproved model with farther neighbor atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983)

    Article  ADS  Google Scholar 

  2. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984)

    Article  ADS  Google Scholar 

  3. R.A. Johnson, Phys. Rev. B 37, 3924 (1988)

    Article  ADS  Google Scholar 

  4. D.J. Oh, R.A. Johnson, J. Mater. Res. 3, 471 (1988)

    Article  ADS  Google Scholar 

  5. D.J. Oh, R.A. Johnson, J. Mater. Res. 4, 1195 (1989)

    Article  ADS  Google Scholar 

  6. R.A. Johnson, Phys. Rev. B 39, 12554 (1989)

    Article  ADS  Google Scholar 

  7. M.I. Baskes, Phys. Rev. B 46, 2727 (1992)

    Article  ADS  Google Scholar 

  8. F.J. Cherne, M.I. Baskes, P.A. Deymier, Phys. Rev. B 65, 024209 (2001)

    Article  ADS  Google Scholar 

  9. M.I. Baskes, Phys. Rev. Lett. 59, 2666 (1987)

    Article  ADS  Google Scholar 

  10. B. Zhang, Y. Quyang, S. Liao, Z. Jin, Phys. B 262, 218 (1999)

    Article  Google Scholar 

  11. B. Zhang, W. Hu, X. Shu, Theory of embedded atom method and its application to materials science—atomic scale materials design theory (Hunan University Publication Press, Changsha, 2003)

    Google Scholar 

  12. J. Zhang, X. Song, X. Zhang, K. Xu, J. Phys. Chem. Solids 67, 714 (2006)

    Article  ADS  Google Scholar 

  13. J. Zhang, X. Song, X. Zhang, K. Xu, V. Ji, Surf. Sci. 600, 1277 (2006)

    Article  ADS  Google Scholar 

  14. X. Song, J. Zhang, K. Xu, J. Alloys Compd. 436, 23 (2007)

    Article  Google Scholar 

  15. J. Zhang, X. Song, K. Xu, Appl. Surf. Sci. 253, 3785 (2007)

    Article  ADS  Google Scholar 

  16. Y. Wen, J. Zhang, K. Xu, Colloids Surf. A: Physicochem. Eng. Asp. 304, 67 (2007)

    Article  Google Scholar 

  17. J. Zhang, Y. Wen, K. Xu, Appl. Surf. Sci. 253, 3779 (2007)

    Article  ADS  Google Scholar 

  18. J. Zhang, H. Yu, K. Xu, V. Ji, Superlattices Microstruct. 44, 259 (2008)

    Article  ADS  Google Scholar 

  19. J. Zhang, F. Wang, K. Xu, V. Ji, Phys. B 141, 2178 (2009)

    Article  ADS  Google Scholar 

  20. Z. Lin, Y. Zhang, J. Zhang, K. Xu, Phys. Status. Solidi. B 248, 897 (2011)

    Article  ADS  Google Scholar 

  21. W. Hu, X. Shu, B. Zhang, Comp. Mater. Sci. 23, 175 (2002)

    Article  Google Scholar 

  22. W. Hu, B. Zhang, B. Huang, F. Gao, D.J. Bacon, J. Phys.: Condens. Matter 13, 1193 (2001)

    ADS  Google Scholar 

  23. X. Shu, Study on the physical properties, point defects and atomic diffusion in intermetallics by a modified analytic EAM model, Ph. D. Dissertation (Hunan University, Changsha, 2001)

  24. F. Fang, X. Shu, H. Deng, W. Hu, M. Zhu, Mater. Sci. Eng. A 355, 357 (2003)

    Article  Google Scholar 

  25. J.H. Rose, J.R. Smith, F. Guinea, J. Ferrante, Phys. Rev. B 29, 2963 (1984)

    Article  ADS  Google Scholar 

  26. B.J. Lee et al., Phys. Rev. B 64, 184102–184111 (2001)

    Article  ADS  Google Scholar 

  27. M.I. Baskes, Phys. Rev. B46, 2727–2742 (1992)

    Article  ADS  Google Scholar 

  28. M.I. Baskes et al., Phys. Rev. B20, 3197–3204 (1979)

    Article  ADS  Google Scholar 

  29. R. Pasianot et al., Phys. Rev. B43, 6952–6961 (1991)

    Article  ADS  Google Scholar 

  30. A.M. Guellil, J.B. Adams, J. Mater. Res 7, 639–652 (1992)

    Article  ADS  Google Scholar 

  31. H.W. Sheng et al., Phys. Rev. B 83, 134118–134120 (2011)

    Article  ADS  Google Scholar 

  32. N. Saunders et al., CALPHAD 12, 351–374 (1988)

    Article  Google Scholar 

  33. M.I. Baskes et al., Mod. Simul. Mater. Eng. 2, 147–163 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Son Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, HS., An, JD. & Jong, YS. EAM potentials for BCC, FCC and HCP metals with farther neighbor atoms. Appl. Phys. A 120, 189–197 (2015). https://doi.org/10.1007/s00339-015-9149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9149-5

Keywords

Navigation