Skip to main content
Log in

Morphology of organic semi-crystalline polymer after thermal nanoimprint

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The morphology of highly regular, semi-crystalline P3HT (poly 3-hexylthiophene-2.5-diyl) after thermal nanoimprint is studied and compared to that of its amorphous counterpart. Differential scanning calorimetry measurements of both materials provide the glass transition temperature (below room temperature) as well as the melting temperature (T m ≈ 235 °C) and the crystallization temperature (T c ≈ 200 °C) of the semi-crystalline polymer. Imprint experiments are performed at temperatures below and above the melting temperature of the crystallites. The samples imprinted with line structures in the range of 135–500 nm are investigated by scanning electron microscopy and transmission measurements. In agreement with T m, the investigations indicate that the crystallites do not melt when semi-crystalline P3HT is imprinted below T m. After imprint above T m, no more indication of the crystallites is found. Furthermore, physical self-assembly only occurred after imprint beyond T m with semi-crystalline P3HT, indicating a fully amorphous state. The morphology observed—the roughness of the surface within partly filled cavities when crystallites are present—correlates well with the results from optical measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Yang, K. Mielczarek, M. Aryal, A. Zakhidov, W. Hu, ACS Nano 6, 2877 (2012)

    Article  Google Scholar 

  2. R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, Nature 397, 121 (1999)

    Article  ADS  Google Scholar 

  3. Y.F. Liew, H. Aziz, N.X. Hu, G. Xu, Z. Popovic, Appl. Phys. Lett. 77, 2650 (2000)

    Article  ADS  Google Scholar 

  4. M.D. Austin, S.Y. Chou, Appl. Phys. Lett. 81, 4431 (2002)

    Article  ADS  Google Scholar 

  5. H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, D.M. de Leeuw, Nature 401, 685 (1999)

    Article  ADS  Google Scholar 

  6. R.J. Kline, M.D. McGehee, M.F. Tony, Nat. Mater. 5, 222 (2006)

    Article  ADS  Google Scholar 

  7. R.J. Kline, M.D. McGehee, E.N. Kadnikova, J.S. Liu, J.M.J. Frechet, M.F. Tony, Macromelecules 38, 3312 (2005)

    Article  ADS  Google Scholar 

  8. M. Aryal, K. Trivedi, W. Hu, ACS Nano 3, 3085 (2009)

    Article  Google Scholar 

  9. S. Wang, A. Mayer, K. Dhima, C. Steinberg, H.-C. Scheer, J. Vac. Sci. Technol. 31, 06FB06-1 (2013)

    Google Scholar 

  10. M.S.A. Abdou, S. Holdcroft, Macromolecules 26, 2954 (1993)

    Article  ADS  Google Scholar 

  11. G. Griffini, S. Turri, M. Levi, Polymer. Bull. 66, 211 (2011)

    Article  Google Scholar 

  12. T. Chen, X. Wu, R.D. Riecke, J. Am. Chem. Soc. 117, 233 (1995)

    Article  Google Scholar 

  13. N. Chaix, C. Gourgon, S. Landis, C. Parret, M. Fink, F. Reuther, D. Mecerreyes, Nanotechnology 17, 4082 (2006)

    Article  ADS  Google Scholar 

  14. N. Bogdanski, M. Wissen, S. Möllenbeck, H.-C. Scheer, J. Vac. Sci. Technol. 24, 2998 (2006)

    Article  Google Scholar 

  15. N. Bogdanski, M. Wissen, S. Möllenbeck and H.-C. Scheer, SPIE 6533 (2007)

  16. S. Malik, A.K. Nandi, J. Pol. Phys. 40, 2073 (2002)

    Article  Google Scholar 

  17. A. Zen, M. Sapphiannikova, D. Neher, J. Grenzer, S. Grigorian, U. Pietsch, U. Asawapirom, S. Janietz, U. Scherf, I. Lieberwirth, G. Wegner, Macromolecules 39, 2162 (2006)

    Article  ADS  Google Scholar 

  18. C. Steinberg, K. Dhima, D. Blenskens, A. Mayer, S. Wang, M. Papenheim, H.-C. Scheer, J. Zajadacz, K. Zimmer, Microelectron. Eng. 123, 4 (2014)

    Article  Google Scholar 

  19. N. Bogdanski: Partial Cavity Filling in Thermal Nanoimprint, Dissertation, Der Andere Verlag (2008)

  20. L.H. Sperling, Introduction to Physical Polymer Science (Wiley, Hoboken, 2001)

    Google Scholar 

  21. D.W. Van Krevelen, Properties of Polymers (Elsevier, Amsterdam, 1990)

    Google Scholar 

Download references

Acknowledgments

Partial funding by the Deutsche Forschungsgemeinschaft DFG is highly acknowledged. We appreciate the support with imprint molds by Prof. Y. Hirai, Osaka Prefecture University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Dhima, K., Steinberg, C. et al. Morphology of organic semi-crystalline polymer after thermal nanoimprint. Appl. Phys. A 121, 357–362 (2015). https://doi.org/10.1007/s00339-015-9204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9204-2

Keywords

Navigation