Skip to main content
Log in

Device architecture engineering in polymer/ZnO quantum dots/ZnO array ternary hybrid solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hybrid solar cells (HSCs) based on pristine ZnO nanorod array (ZnO-NRA) and conjugated polymer with ordinary inverted device architecture normally perform low open-circuit voltage (V oc) and short-circuit current density (J sc). This paper compares three improved device architectures for preparation of efficient polymer/ZnO-NRA HSCs by incorporating ZnO quantum dots (ZnO-QDs) into device with different engineering. It is found that when growth of ZnO-QDs on ZnO nanorod surface to formation of homostructured ZnO core–shell array (ZnO-CSA) instead of pristine ZnO-NRA can significantly increase the device V oc, while blending ZnO-QDs into MEH-PPV between nanorods can significantly increase the device J sc. The best photovoltaic performance is realized in the architecture consisting of ZnO-CSA as well as blends of MEH-PPV and ZnO-QDs, in which the V oc and J sc can be significant enhanced simultaneously. The present study reports the architecture-related device performances in polymer/ZnO-NRA solar cells, which will help to guide the design of HSCs or related optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Xu, Q. Qiao, Energy Environ. Sci. 4, 2700 (2011)

    Article  Google Scholar 

  2. J.A. Ayllon, M. Lira-Cantu, Appl. Phys. A 95, 249 (2009)

    Article  ADS  Google Scholar 

  3. J. Huang, Z. Yin, Q. Zheng, Energy Environ. Sci. 4, 3861 (2011)

    Article  Google Scholar 

  4. F. Wu, C. Chen, Y. Zhao, H. Zhang, X. Li, W. Lu, T. Zhang, J. Electrochem. Soc. 161, H593 (2014)

    Article  Google Scholar 

  5. S. Ren, L. Chang, S. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradečak, Nano Lett. 11, 3998 (2011)

    Article  ADS  Google Scholar 

  6. J.C. Cardoso, C.A. Grimes, X. Feng, X. Zhang, S. Komarneni, M.V.B. Zanoni, N. Bao, Chem. Commun. 48, 2818 (2012)

    Article  Google Scholar 

  7. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G. Li, Y. Yang, Nat. Commun. 4, 1 (2013)

    Article  Google Scholar 

  8. D.C. Olson, S.E. Shaheen, R.T. Collins, D.S. Ginley, J. Phys. Chem. C 111, 16670 (2007)

    Article  Google Scholar 

  9. S. Sanchez, C. Lévy-Clément, V. Ivanova, J. Electrochem. Soc. 159, D705 (2012)

    Article  Google Scholar 

  10. Y. Lin, Y. Lee, L. Chang, J. Wu, C. Chen, Appl. Phys. Lett. 94, 063308 (2009)

    Article  ADS  Google Scholar 

  11. C.Y. Kuo, W.C. Tang, C. Gau, T.F. Guo, D.Z. Jeng, Appl. Phys. Lett. 93, 033307 (2008)

    Article  ADS  Google Scholar 

  12. X. Jiang, F. Chen, H. Xu, L. Yang, W. Qiu, M. Shi, M. Wang, H. Chen, Sol. Energy Mater. Sol. Cells 94, 2223 (2010)

    Article  Google Scholar 

  13. F. Chen, W. Qiu, X. Chen, L. Yang, X. Jiang, M. Wang, H. Chen, Sol. Energy 85, 2122 (2011)

    Article  ADS  Google Scholar 

  14. L.E. Greene, M. Law, B.D. Yuhas, P. Yang, J. Phys. Chem. C 111, 18451 (2007)

    Article  Google Scholar 

  15. L. Wang, D. Zhao, Z. Su, B. Li, Z. Zhang, D. Shen, J. Electrochem. Soc. 158, H804 (2011)

    Article  Google Scholar 

  16. L. Wang, D. Zhao, Z. Su, D. Shen, Nanoscale Res. Lett. 7, 106 (2012)

    Article  ADS  Google Scholar 

  17. J. Wang, T. Zhang, D. Wang, R. Pan, Q. Wang, H. Xia, Chem. Phys. Lett. 541, 105 (2012)

    Article  ADS  Google Scholar 

  18. D.C. Olson, J. Piris, R.T. Collins, S.E. Shaheen, D.S. Ginley, Thin Solid Films 496, 26 (2006)

    Article  ADS  Google Scholar 

  19. T.H. Lee, H.J. Sue, X. Cheng, Nanotechnology 22, 285401 (2011)

    Article  ADS  Google Scholar 

  20. L.E. Greene, B.D. Yuhas, M. Law, D. Zitoun, P. Yang, Inorg. Chem. 45, 7535 (2006)

    Article  Google Scholar 

  21. F. Wu, Q. Cui, Z. Qiu, C. Liu, H. Zhang, W. Shen, M. Wang, A.C.S. Appl, Mater. Interfaces 5, 3246 (2013)

    Article  Google Scholar 

  22. H. Usui, J. Phys. Chem. C 111, 9060 (2007)

    Article  Google Scholar 

  23. P. Kundu, P.A. Deshpande, G. Madras, N. Ravishankar, J. Mater. Chem. 21, 4209 (2011)

    Article  Google Scholar 

  24. F. Fang, D.X. Zhao, B.H. Li, Z.Z. Zhang, J.Y. Zhang, D.Z. Shen, Appl. Phys. Lett. 93, 233115 (2008)

    Article  ADS  Google Scholar 

  25. T. Gao, Q. Li, T. Wang, Chem. Mater. 17, 887 (2005)

    Article  Google Scholar 

  26. W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Adv. Mater. 16, 1009 (2004)

    Article  Google Scholar 

  27. B. Mashford, J. Baldauf, T.L. Nguyen, A.M. Funston, P. Mulvaney, J. Appl. Phys. 109, 094305 (2011)

    Article  ADS  Google Scholar 

  28. H. Spanggaard, F.C. Krebs, Sol. Energy Mater. Sol. Cells 83, 125 (2004)

    Article  Google Scholar 

  29. V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, M.T. Rispens, J. Appl. Phys. 94, 6849 (2003)

    Article  ADS  Google Scholar 

  30. P. Ravirajan, A.M. Peiro, M.K. Nazeeruddin, M. Graetzel, D.D.C. Bradley, J.R. Durrant, J. Nelson, J. Phys. Chem. B 110, 7635 (2006)

    Article  Google Scholar 

  31. J. Kruger, U. Bach, M. Gratzel, Adv. Mater. 12, 447 (2000)

    Article  Google Scholar 

  32. Y.Y. Lin, T.H. Chu, S.S. Li, C.H. Chuang, C.H. Chang, W.F. Su, C.P. Chang, M.W. Chu, C.W. Chen, J. Am. Chem. Soc. 131, 3644 (2009)

    Article  Google Scholar 

  33. A. Moliton, J.M. Nunzi, Poly. Int. 55, 583 (2006)

    Article  Google Scholar 

  34. T. Kawatsu, V. Coropceanu, A.J. Ye, J.L. Bredas, J. Phys. Chem. C 112, 3429 (2008)

    Article  Google Scholar 

  35. B. Kippelen, J.L. Bredas, Organic photovoltaics. Energy Environ. Sci. 2, 251 (2009)

    Article  Google Scholar 

  36. C. Goh, S.R. Scully, M.D. McGehee, J. Appl. Phys. 101, 114503 (2007)

    Article  ADS  Google Scholar 

  37. P. Ruankham, L. Macaraig, T. Sagawa, H. Nakazumi, S.J. Yoshikawa, J. Phys. Chem. C 115, 23809 (2011)

    Article  Google Scholar 

  38. W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Adv. Funct. Mater. 16, 1112 (2006)

    Article  Google Scholar 

  39. T. Xu, S. Venkatesan, D. Galipeau, Q. Qiao, Sol. Energy Mater. Sol. Cells 108, 246 (2013)

    Article  Google Scholar 

  40. M.S. Kim, B. Kim, J. Kim, A.C.S. Appl, Mater. Interfaces 1, 1264 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (LQ14F040003) and the Seed Fund of Young Scientific Research Talents of Huzhou University (RK21056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 721 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Zhao, Y., Zhang, H. et al. Device architecture engineering in polymer/ZnO quantum dots/ZnO array ternary hybrid solar cells. Appl. Phys. A 120, 941–947 (2015). https://doi.org/10.1007/s00339-015-9260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9260-7

Keywords

Navigation