Skip to main content
Log in

The underestimated impact of instabilities with nanoimprint

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

With nanoimprint, instabilities of the polymeric layer between the substrate and the stamp are observed when incomplete filling of the stamp cavities prevails, resulting in capillary bridges and meandering structures. Experiments show that instabilities may also affect the initial situation of a thermal nanoimprint process. Already at the beginning of the actual imprint step, the polymeric surface may be highly non-uniform, with undulations of the film thickness, polymeric bridges and de-wetted regions; thus, the starting point for imprint may differ substantially from the general expectation of a uniform spin-coated layer. A detailed instability analysis considering the combined effect of van der Waals forces, electrostatic forces and temperature gradients under realistic imprint conditions clearly identifies temperature gradients to be the cause for high initial layer non-uniformities. We found that during heat-up (before imprint) temperature differences of 10 °C may exist between the top and bottom hotplate of a thermal imprint system. These temperature differences result in the non-uniformities of the polymeric layer observed, when stamp and sample are heated under low-pressure contact, where some small but locally arbitrary gaps exist between polymer and stamp. This result asks for a reconsideration of the thermal nanoimprint procedure. It also confirms the high impact of temperature control for uniform, low-defect imprint results; this is critical not only during imprint, but also during heat-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Bogdanski, M. Wissen, S. Möllenbeck, H.-C. Scheer, J. Vac. Sci. Technol. B 24, 2998–3001 (2006)

    Article  Google Scholar 

  2. P. Deshpande, X. Sun, S.Y. Chou, Appl. Phys. Lett. 79, 1688–1690 (2001)

    Article  ADS  Google Scholar 

  3. S.Y. Chou, L. Zhuang, L. Guo, Appl. Phys. Lett. 75, 1004–1006 (1999)

    Article  ADS  Google Scholar 

  4. N. Chaix, C. Gourgon, S. Landis, C. Perret, M. Fink, F. Reuther, D. Mercerreyes, Nanotechnology 17, 4082 (2006)

    Article  ADS  Google Scholar 

  5. N. Chaix, S. Landis, D. Hermelin, T. Leveder, C. Perret, V. Delaye, C. Gourgon, J. Vac. Sci. Technol. B 24, 3011–3015 (2006)

    Article  Google Scholar 

  6. E. Schäffer, PhD Thesis, Konstanz, Germany, 2001

  7. E. Schäffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner, Nature 403, 874–877 (2000)

    Article  ADS  Google Scholar 

  8. Z. Suo, J. Liang, Appl. Phys. Lett. 78, 3971–3973 (2001)

    Article  ADS  Google Scholar 

  9. L. Wu, S.Y. Chou, Appl. Phys. Lett. 82, 3200–3202 (2003)

    Article  ADS  Google Scholar 

  10. E. Schäffer, S. Harkema, M. Roderdink, R. Blossey, U. Steiner, Adv. Mater. 15, 514–517 (2003)

    Article  Google Scholar 

  11. E. Schäffer, U. Steiner, Eur. Phys. J. E 8, 347–351 (2002)

    Article  Google Scholar 

  12. A. Vrij, 23. Disc. Farad. Soc. 42(1966), 23 (1966)

    Article  Google Scholar 

  13. A. Vrij, J. Colloid Sci 19, 1 (1964)

    Article  Google Scholar 

  14. H. Hiroshima, M. Komuro, N. Kasahara, Y. Kurashima, J. Taniguchi, Jpn. J. Appl. Phys. 42, 3849–3853 (2003)

    Article  ADS  Google Scholar 

  15. X. Liang, H. Tan, Z. Fu, S.Y. Chou, Nanotechnology 18, 025303 (2007)

    Article  ADS  Google Scholar 

  16. D. Morihara, H. Hiroshima, Y. Hirai, Microelectron. Eng. 86, 684–687 (2009)

    Article  Google Scholar 

  17. K.Y. Suh, H.H. Lee, Adv. Funct. Mater. 12, 405–413 (2002)

    Article  Google Scholar 

  18. A. Mayer, K. Dhima, S. Möllenbec, S. Wang, H.C. Scheer, J. Sakamoto, H. Kawata, Y. Hirai, J. Vac. Sci. Technol. B 30, 06FB03 (2012)

    Google Scholar 

  19. A. Mayer, S. Möllenbeck, K. Dhima, S. Wang, H.C. Scheer, J. Vac. Sci. Technol. B 29, 06FC13 (2011)

    Google Scholar 

  20. C. Gourgon, C. Perret, G. Micouin, F. Lazzarino, J.H. Tortai, O. Joubert, J.-P.E. Grollier, J. Vac. Sci Technol. B21, 98–105 (2003)

    Article  Google Scholar 

  21. H. Schulz, M. Wissen, H.-C. Scheer, Microelectron. Eng. 67–68, 657–663 (2003)

    Article  Google Scholar 

  22. R. Seemann, S. Herminghaus, K. Jacobs, Phys. Rev. Lett. 86, 5534–5537 (2001)

    Article  ADS  Google Scholar 

  23. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, Amsterdam, 2011)

    Google Scholar 

  24. J.N. Israelachvili, Proc. R. Soc. Lond. A 331, 39–55 (1972)

    Article  ADS  Google Scholar 

  25. G. Reiter, Phys. Rev. Lett. 87, 186101 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Partial funding by the Deutsche Forschungsgemeinschaft DFG is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-C. Scheer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, A., Dhima, K., Wang, S. et al. The underestimated impact of instabilities with nanoimprint. Appl. Phys. A 121, 405–414 (2015). https://doi.org/10.1007/s00339-015-9300-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9300-3

Keywords

Navigation