Skip to main content
Log in

Structure and resistivity of bismuth thin films deposited by pulsed DC sputtering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bismuth thin films have been deposited using pulsed DC magnetron sputter deposition under four deposition conditions, combining powers of 50 and 100 W and argon gas pressures, 2 and 10 mTorr. Estimated deposition rates were between 0.08 and 3.5 nm s−1. The films were examined using scanning electron microscopy, cross-sectioning using a focussed ion beam (FIB), X-ray diffraction and sheet resistance and Hall effect measurement. Room temperature deposition gave a predominant orientational texture of (111) rhombohedral. However, higher film thickness, low sputtering power, high sputtering gas pressure and deposition onto a heated substrate above 125 °C increase the fraction of (110) orientation. FIB cross-sectioning indicates that films deposited at room temperature have an irregular crystalline structure with voids, but those grown at 160 °C are denser with a better polycrystalline structure. Transport measurements indicate a dominance of conduction by electrons, with films deposited at room temperature having high sheet resistance, low sheet resistance being favoured by low sputtering pressure. Deposition at higher temperatures improves the conductivity but increases the Hall coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Smith, G. Baraff, J. Rowell, Phys. Rev. 135, A1118 (1964)

    Article  ADS  Google Scholar 

  2. P. Chiu, I. Shih, Nanotechnology 15, 1489 (2004)

    Article  ADS  Google Scholar 

  3. A.A. Ramadan, A.M. El-Shabiny, N.Z. El-Sayed, Thin Solid Films 209, 32 (1992)

    Article  ADS  Google Scholar 

  4. M. Inoue, Y. Tamaki, H. Yagi, J. Appl. Phys. 45, 1562 (1974)

    Article  ADS  Google Scholar 

  5. L. Kumari, S.-J. Lin, J.-H. Lin, Y.-R. Ma, P.-C. Lee, Y. Liou, Appl. Surf. Sci. 253, 5931 (2007)

    Article  ADS  Google Scholar 

  6. Y. Ahn, Y.-H. Kim, S.-I. Kim, K.-H. Jeong, Curr. Appl. Phys. 12, 1518 (2012)

    Article  ADS  Google Scholar 

  7. X. Duan, J. Yang, W. Zhu, X. Fan, C. Xiao, Mater. Lett. 61, 4341 (2007)

    Article  Google Scholar 

  8. M. Boffoué, B. Lenoir, A. Jacquot, H. Scherrer, A. Dauscher, M. Stölzer, J. Phys. Chem. Solids 61, 1979 (2000)

    Article  ADS  Google Scholar 

  9. J.C.G. de Sande, T. Missana, C.N. Afonso, J. Appl. Phys. 80, 7023 (1996)

    Article  ADS  Google Scholar 

  10. J.-H. Hsu, Y.-S. Sun, H.-X. Wang, P.C. Kuo, T.-H. Hsieh, C.-T. Liang, J. Magn. Magn. Mater. 272–276, 1769 (2004)

    Article  Google Scholar 

  11. D.-H. Kim, S.-H. Lee, J.-K. Kim, G.-H. Lee, Appl. Surf. Sci. 252, 3525 (2006)

    Article  ADS  Google Scholar 

  12. D. Depla, S. Mahieu, Reactive Sputter Deposition (Springer Science & Business Media, Heidelberg, 2008), p. 590

    Book  Google Scholar 

  13. J. Li, M. K. Narasimhan, V. Pavate, D. Loo, S. Rosenblum, L. Trubell, R. Scholl, S. Seamons, C. Hagerty, and S. Ramaswami, in Microelectron. Manuf., ed. by D.N. Patel and M. Graef (International Society for Optics and Photonics, 1997), pp. 33–41

  14. R.W.G. Wyckoff, Volume 1, 2nd edn. (Wiley, New York, 1963), p. 32

    Google Scholar 

  15. P. Cucka, C.S. Barrett, Acta Crystallogr. 15, 865 (1962)

    Article  Google Scholar 

  16. Powder Diffraction File, Joint Committee on Power Diffraction Standards (ASTM, Philadelphia, PA, 2000). (Card 85-1329)

    Google Scholar 

  17. M. Rudolph, J.J. Heremans, Appl. Phys. Lett. 100, 241601 (2012)

    Article  ADS  Google Scholar 

  18. S.A. Stanley, C. Stuttle, A.J. Caruana, M.D. Cropper, A.S.O. Walton, J. Phys. D Appl. Phys. 45, 435304 (2012)

    Article  ADS  Google Scholar 

  19. S. Cao, C. Guo, Y. Wang, J. Miao, Z. Zhang, Q. Liu, Solid State Commun. 149, 87 (2009)

    Article  ADS  Google Scholar 

  20. B.-K. Wu, H.-Y. Lee, M.-Y. Chern, Appl. Phys. Express 6, 035504 (2013)

    Article  ADS  Google Scholar 

  21. Y. Tian, C.F. Guo, S. Guo, Y. Wang, J. Miao, Q. Wang, Q. Liu, AIP Adv. 2, 012112 (2012)

    Article  ADS  Google Scholar 

  22. J.A. Thornton, Annu. Rev. Mater. Sci. 7, 239 (1977)

    Article  ADS  Google Scholar 

  23. J.A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974)

    Article  ADS  Google Scholar 

  24. C.R.M. Grovenor, H.T.G. Hentzell, D.A. Smith, Acta Metall. 32, 773 (1984)

    Article  Google Scholar 

  25. L.J. van der Pauw, Philips Res. Repts. 13, 1 (1958)

    Google Scholar 

  26. Y. Hasegawa, Y. Ishikawa, T. Saso, H. Shirai, H. Morita, T. Komine, H. Nakamura, Phys. B Condens. Matter 382, 140 (2006)

    Article  ADS  Google Scholar 

  27. A.H. de Kuijper, J. Bisschop, Thin Solid Films 110, 99 (1983)

    Article  Google Scholar 

  28. C.F. Gallo, B.S. Chandrasekhar, P.H. Sutter, J. Appl. Phys. 34, 144 (1963)

    Article  ADS  Google Scholar 

  29. B.Y. Jin, H.K. Wong, G.K. Wong, J.B. Ketterson, Y. Eckstein, Thin Solid Films 110, 29 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

John Bates and Geoff West of Loughborough Materials Characterisation Centre are thanked for the SEM and FIB, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Cropper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanley, S.A., Cropper, M.D. Structure and resistivity of bismuth thin films deposited by pulsed DC sputtering. Appl. Phys. A 120, 1461–1468 (2015). https://doi.org/10.1007/s00339-015-9337-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9337-3

Keywords

Navigation