Skip to main content
Log in

Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we report some physical properties of AgAlP2O7 compound obtained through the standard solid-state reaction technique. AgAlP2O7 has been studied by X-ray diffraction, Raman spectroscopy and impedance spectroscopy. The title compound crystallized at room temperature (T = 300 K) in the monoclinic system with P21/c space group. The electrical properties were studied over a wide range of temperature (440–640 K) in the frequency range of 40 Hz–10 MHz. Study of frequency dependence of AC conductivity suggests that the material obeys the Jonscher’s universal dynamic law. The conductivity is equal to 9.37 × 10−5 Ω cm−1 at 640 K, and it is thermally activated with activation energy of 0.76 eV. The variation of DC conductivity with temperature follows the Arrhenius behavior. The calculated values of s decreased with temperature. This behavior reveals that the conduction mechanism is correlated with barrier hopping. The binding energy W m and the hopping distance R ω were deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E.J. Baran, R.C. Mercader, A. Massaferro, E. Kremer, Spectrochim. Acta A 60, 1001 (2004)

    Article  ADS  Google Scholar 

  2. M.E. Hagerman, K.R. Poppelmeyer, Chem. Mater. 7, 602 (1995)

    Article  Google Scholar 

  3. H. Aono, E. Sugimoto, Y. Sadaoka, N. Amanaka, G. Adaki, Solid State Ionics 62, 309 (1993)

    Article  Google Scholar 

  4. J.P. Boilot, G. Collin, P. Colomban, J. Solid State Chem. 73, 160 (1988)

    Article  ADS  Google Scholar 

  5. S. Villain, E. Nigrelli, G. Nihoul, Solid State Ionics 116, 73 (1999)

    Article  Google Scholar 

  6. F. Sanz, C. Parada, J.M. Rojo, C. Ruiz-Valero, R. Saez-Puche, J. Solid State Chem. 145, 604 (1999)

    Article  ADS  Google Scholar 

  7. C. Delmas, A. Nadini, J.L. Subeyrou, Solid State Ionics 28, 419 (1988)

    Article  Google Scholar 

  8. A. Clearfeld (ed.), Inorganic ionic exchange materials (CRC Press, Boca Raton, 1982)

    Google Scholar 

  9. S. Arsalane, M. Ziyad, G. Coudurier, J.C. Vedrine, J. Catal. 159, 162 (1996)

    Article  Google Scholar 

  10. Y. Hizhnyi, O. Gomenyuk, S. Nedilko, A. Oliynyk, B. Okhrimenko, V. Bojko, Radiat. Meas. 42, 719 (2007)

    Article  Google Scholar 

  11. Y. Ben Taher, A. Oueslati, M. Gargouri (2014) Ionics. doi: 10.1007/s11581-014-1288-8

  12. Y. Ben Taher, R. Hajji A. Oueslati, M. Gargouri (2014) J. Clust. Sci. doi: 10.1007/s10876-014-0812-3

  13. S. Nasri, M. Megdiche, M. Gargouri, K. Guidara, Ionics (2013). doi:10.1007/s11581-013-0969-z

    Google Scholar 

  14. H.Y.P. Hong, Mater. Res. Bull. 11, 173 (1976)

    Article  Google Scholar 

  15. Goodenough JB (1980) Fast ionic conductors, in UNESCO Course in Materials Science, Erice, Italy

  16. A. Daidouh, M.L. Veiga, C.P. Marin, M. Martinez-Ripoll, Acta Crystallogr. C 53, 167 (1997)

    Article  Google Scholar 

  17. S.R.S. Prabaharan, M.S. Michael, S. Radhakrishna, C. Julien, J. Mater. Chem. 7, 1791 (1997)

    Article  Google Scholar 

  18. J.P. Gamaondes, F. d’Yvoire, A. Boulle, C R Acad. Sci. (Paris) 272, 49 (1971)

    Google Scholar 

  19. J. Belkouch, L. Monceaux, E. Bordes, P. Courtine, Mater. Res. Bull. 30, 149 (1995)

    Article  Google Scholar 

  20. B.S. ParajÓn-Costa, R.C. Mercaderb, E.J. Baran, J. Phys. Chem. Solids 74, 354 (2013)

    Article  ADS  Google Scholar 

  21. G.T. Stranford, R.A. Condrate Sr, B.C. Cornilsen, J. Mol. Struct. 73, 231 (1981)

    Article  ADS  Google Scholar 

  22. A.R. West, D.C. Sinclair, N. Hirose, J. Electroceram. 1, 65 (1997)

    Article  Google Scholar 

  23. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  24. H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, N. Rzigua, A. Selmi, K. Khirouni, S. Alaya, J. Magn. Magn. Mater. 316, 23 (2007)

    Article  ADS  Google Scholar 

  25. Moti Ram, Solid State Sci. 12, 350 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  26. K. Srinivas, P. Sarah, S.V. Suryanarayana, Bull. Mater. Sci. 26, 247 (2003)

    Article  Google Scholar 

  27. Okutan M, Basaran E, Bakan HI, Yakuphanoglu F (2005) J Phys B 364:300

  28. A.R. Long, Adv. Phys. 31, 553 (1982)

    Article  ADS  Google Scholar 

  29. A. Ghosh, Phys. Rev. B 42, 5665 (1990)

    Article  ADS  Google Scholar 

  30. M. Pollak, Phil. Mag. 23, 519 (1971)

    Article  ADS  Google Scholar 

  31. V. Chithambaram, S. Jerome Das, S. Krishnan, J. Alloys Compd. 509, 4543 (2011)

    Article  Google Scholar 

  32. K.H. Mahmoud, F.M. Abdel-Rahim, K. Atef, Y.B. Saddeek, Curr. Appl. Phys. 11, 55 (2011)

    Article  ADS  Google Scholar 

  33. I.A. Niel, Proc SPIE 237, 422 (1980)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ben Taher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Taher, Y., Oueslati, A., Maaloul, N.K. et al. Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound. Appl. Phys. A 120, 1537–1543 (2015). https://doi.org/10.1007/s00339-015-9353-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9353-3

Keywords

Navigation