Skip to main content
Log in

AC conductivity and structural properties of Mg-doped ZnO ceramic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Undoped ZnO and Zn1−x Mg x O ceramic pellets were synthesized by the standard sintering method at the temperature of 1200 °C. The influence of Mg doping on the morphological, structural and electrical properties was studied. The scanning electron microscopy images revealed rough surface textured by grain boundaries and compacted grains having different shapes and sizes. Indeed, the X-ray diffraction reveals the alloying of hexagonal ZnMgO phase and the segregation of cubic MgO phase. The crystallite size, strain and stress were studied using Williamson–Hall (W–H) method. The results of mean particle size of Zn1−x Mg x O composites showed an inter-correlation with W–H analysis and Sherrer method. The electrical conductivity of the films was measured from 173 to 373 K in the frequency range of 0.1 Hz–1 MHz to identify the dominant conductivity mechanism. The DC conductivity is thermally activated by electron traps having activation energy of about 0.09 to 0.8 eV. The mechanisms of AC conductivity are controlled by the correlated barrier hopping model for the ZnO sample and the small polaron tunneling (SPT) model for Zn0.64Mg0.36O and Zn0.60Mg0.40O composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.B. Rao, Mater. Chem. Phys. 64, 62 (2000)

    Article  Google Scholar 

  2. R.W. Birkmire, E. Eser, Annu. Rev. Mater. Sci. 27, 625 (1997)

    Article  ADS  Google Scholar 

  3. T. Aoki, Y. Hatanaka, D.C. Look, Appl. Phys. Lett. 76, 3257 (2000)

    Article  ADS  Google Scholar 

  4. Mariem Chaari, Adel Matoussi, Phys. B 407, 3441 (2012)

    Article  ADS  Google Scholar 

  5. Y.R. Ryu, T.S. Lee, Appl. Phys. Lett. 83, 87 (2003)

    Article  ADS  Google Scholar 

  6. T.V. Vimalkumar, N. Poornima, C. Sudha Kartha, K.P. Vijayakumar, Mater. Sci. Eng. B 175, 29 (2010)

    Article  Google Scholar 

  7. A. Tiburcio-Silver, J.C. Joubert, M. Labeau, J. Phys. III Fr. 2, 1287 (1992)

    Google Scholar 

  8. M.M. Hassan, S.A. Ahmed, M. Chaman, W. Khan, A.H. Naqvi, A. Azam, Mater. Res. Bull. 47, 3952 (2012)

    Article  Google Scholar 

  9. M. Chaari, A. Matoussi, Mater. Sci. Eng. B 178, 1130 (2013)

    Article  Google Scholar 

  10. F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, S.N. Heo, B.H. Koo, Acta Mater. 60, 5190 (2012)

    Article  Google Scholar 

  11. N. Kılınç, L. Arda, S. Öztürk, Z.Z. Öztürk, Cryst. Res. Technol. 45(5), 29 (2010)

    Google Scholar 

  12. G.H. Ning, X.P. Zhao, J. Li, Opt. Mater. 27, 1 (2004)

    Article  ADS  Google Scholar 

  13. Z.Q. Ma, W.G. Zhao, Y. Wang, Thin Solid Films 515, 8611 (2007)

    Article  ADS  Google Scholar 

  14. D.X. Zhao, Y.C. Liu, D.Z. Shen, Y.M. Lu, J.Y. Zhang, X.W. Fan, J. Cryst. Growth 234, 427 (2002)

    Article  ADS  Google Scholar 

  15. J.S. Park, Y.H. Han, J. Eur. Ceram. Soc. 27, 1077 (2007)

    Article  Google Scholar 

  16. Z.J. Othman, A. Matoussi, F. Fabbari, F. Rossi, G. Salviati, J. Appl. Phys. A 116(3), 1501 (2014)

    Article  ADS  Google Scholar 

  17. H. Yoon, G. Nam, H. Park, J.-S. Son, J.-Y. Leem, Electron. Mater. Lett. 9(4), 545 (2013)

    Article  ADS  Google Scholar 

  18. A. Shukla, V.K. Kaushik, D. Prasher, Electron. Mater. Lett. 10(1), 61 (2014)

    Article  Google Scholar 

  19. S.M. Park, G.H. Gu, C.G. Park, Phys. Status Solidi A 208(11), 2688 (2011)

    Article  ADS  Google Scholar 

  20. P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, Sens. Actuators A Phys. 164, 8 (2010)

    Article  Google Scholar 

  21. Q. Zheng, F. Huang, K. Ding, J. Huang, D. Chen, Z. Zhan, Z. Lin, Appl. Phys. Lett. 98, 221112 (2011)

    Article  ADS  Google Scholar 

  22. P. Cao, Y. Bai, D.X. Zhao, D.Z. Shen, Mater. Sci. Semicond. Process. 14, 73 (2011)

    Article  Google Scholar 

  23. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, Solid State Commun. 149, 1919 (2009)

    Article  ADS  Google Scholar 

  24. K.D. Rogers, P. Daniels, Biomaterials 23, 2577 (2002)

    Article  Google Scholar 

  25. J.-M. Zhang, Y. Zhang, K.-W. Xu, V. Ji, Solid State Commun. 139, 87 (2006)

    Article  ADS  Google Scholar 

  26. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1985)

    Google Scholar 

  27. S. Thakur, J. Kumar, J. Sharma, N. Sharma, P. Kumar, J. Optoelectron. Adv. Mater. 15(7–8), 989 (2013)

    Google Scholar 

  28. Y.T. Prabhu, K. Venkateswara Rao, V. Sesha Sai Kumar, B. Siva Kumari, Int. J. Eng. Adv. Technol. 2(4), 2249 (2013)

    Google Scholar 

  29. D.L. Sidebottom, Phys. Rev. Lett. 83, 983 (1999)

    Article  ADS  Google Scholar 

  30. B. Roling, A. Happe, K. Funke, M.D. Ingram, Phys. Rev. Lett. 78, 2160 (1997)

    Article  ADS  Google Scholar 

  31. S. Capaccioli, M. Lucchesi, P.A. Rolla, G. Ruggeri, J. Phys, Condens. Matter 10, 5595 (1998)

    Article  ADS  Google Scholar 

  32. D.S. Mc Lachlan, M.B. Heaney, Phys. Rev. B 60, 12746 (1999)

    Article  ADS  Google Scholar 

  33. M.T. Connor, S. Roy, T.A. Ezquerra, F.J. Balta Calleja, Phys. Rev. B 57, 2286 (1998)

    Article  ADS  Google Scholar 

  34. P. Pötschke, S.M. Dudkin, I. Alig, Polymer 44, 5023 (2003)

    Article  Google Scholar 

  35. F. Kremer, A. SchÖnhals, Broadband Dielectric Spectroscopy (Springer, Heidelberg, 2002)

    Google Scholar 

  36. J.C. Dyre, T.B. Schroeder, Rev. Mod. Phys. 72, 873 (2000)

    Article  ADS  Google Scholar 

  37. G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Compos. A 34, 1187 (2003)

    Article  Google Scholar 

  38. H. Böttger, U.V. Bryskin, Hopping Conduction in Solids, vol. 41 (Verlag Akademie, Berlin, 1985), p. 69

    Google Scholar 

  39. G.C. Psarras, Compos. A 37, 1545 (2006)

    Article  Google Scholar 

  40. A.K. Jonsher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  41. G.M. Tsangaris, G.C. Psarras, E. Manolakaki, Adv. Compos. Lett. 8, 25 (1999)

    Google Scholar 

  42. J.P. Han, P.Q. Mantas, A.M.R. Senos, J. Eur. Ceram. Soc. 21, 1183 (2001)

    Article  Google Scholar 

  43. Y. Li, R. Deng, B. Yao, G. Xing, D. Wang, W. Tom, Appl. Phys. Lett. 97, 102506 (2010)

    Article  ADS  Google Scholar 

  44. J.F. Cordaro, Y. Shim, J.E. May, J. Appl. Phys. 60, 4186 (1986)

    Article  ADS  Google Scholar 

  45. A. Rohatgi, S.K. Pang, T.K. Gupta, W.D. Straub, J. Appl. Phys. 63, 5375 (1988)

    Article  ADS  Google Scholar 

  46. Y. Shim, J.F. Cordaro, J. Am. Ceram. Soc. 71, 184 (1988)

    Article  Google Scholar 

  47. G. Garcia-Belmonte, J. Bisquert, F. Fabregat-Santiago, Solid State Electron. 43, 2123 (1999)

    Article  ADS  Google Scholar 

  48. S. Li, P. Cheng, J. Li, L. Zhao, in Proceedings of the IEEE International Conference on Solid Dielectric, ICSD pp. 207–210 (2007)

  49. A.F. Kohan, G. Ceder, D. Morgan, C.G. van de Walle, Phys. Rev. B 61, 15019 (2000)

    Article  ADS  Google Scholar 

  50. C.-W. Nahm, Ceram. Int. 36, 1109 (2010)

    Article  Google Scholar 

  51. K.C. Kao, Dielectric Phenomena in Solids with Emphasis on Physical Concepts of Electronic Processes (Elsevier Academic Press, San Diego, 2004), pp. 430–432

    Google Scholar 

  52. S.A. Mansour, I.S. Yahia, F. Yakuphanoglu, Dyes Pigment. 87, 144 (2010)

    Article  Google Scholar 

  53. N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968)

    Article  ADS  Google Scholar 

  54. M.H. Buraidah, L.P. Teo, S.R. Majid, A.K. Arof, Phys. B 404, 1373 (2009)

    Article  ADS  Google Scholar 

  55. J.T. Gudmundsson, H.G. Svavarsson, S. Gudjonsson, H.P. Gislason, Phys. B 340, 324 (2003)

    Article  ADS  Google Scholar 

  56. T. Winie, A.K. Arof, Ionics 10, 193 (2004)

    Article  Google Scholar 

  57. W. Jung, Phys. B 403, 636 (2008)

    Article  ADS  Google Scholar 

  58. G.E. Pike, Phys. Rev. B 6, 1572 (1972)

    Article  ADS  Google Scholar 

  59. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979)

    Google Scholar 

  60. N. Kılınc, S. Ozturk, L. Arda, A. Altındal, Z.Z. Ozturk, J. Alloys Compd. 536, 138 (2012)

    Article  Google Scholar 

  61. H. Li, H. Qiu, Y. Mingpeng, X. Chen, Mater. Chem. Phys. 26, 866 (2011)

    Article  Google Scholar 

  62. A.R. Long, Adv. Phys. 31, 553 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zayani Jaafar Othman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, Z.J., Hafef, O., Matoussi, A. et al. AC conductivity and structural properties of Mg-doped ZnO ceramic. Appl. Phys. A 121, 625–634 (2015). https://doi.org/10.1007/s00339-015-9447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9447-y

Keywords

Navigation