Skip to main content
Log in

Synthesis, thermal, structural, and magnetic properties of phase-pure nanocrystalline BiFeO3 via wet chemical route

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The phase-pure BiFeO3 (BFO) nanoparticles with an average size of ~64 nm were synthesized by using malonic acid through modified Pechini-type sol–gel method. Malonic acid, being a chelating agent, greatly reduced the preparation time by forming gels quickly. Rietveld refinement of X-ray diffraction pattern reveals the phase purity of the BFO nanoparticles. The observed size of the polycrystalline particles found from TEM is comparable with the spin periodicity of BFO. The correlation between the size and magnetic property of the samples has been established by analyzing the M–H loops of the samples. Antiferromagnetic, ferromagnetic-, and paramagnetic-like properties have been observed. The split between ZFC and FC curves reveals a spin-glass-like behavior and the size effect of BFO nanoparticles at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007)

    Article  ADS  Google Scholar 

  2. J.M. Moreau, C. Michel, R. Gerson, W.J. James, Ferroelectric BiFeO3 X-ray and neutron diffraction study. J. Phys. Chem. Solids 32, 1315–1320 (1971)

    Article  ADS  Google Scholar 

  3. P. Fischer, M. Polomskya, I. Sosnowska, M. Szymanksi, Temperature dependence of the crystal and magnetic structures of BiFeO3. J. Phys. C Solid State Phys. 13, 1931–1940 (1980)

    Article  ADS  Google Scholar 

  4. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  5. C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2005)

    Article  ADS  Google Scholar 

  6. V.R. Palkar, J. John, R. Pinto, Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett. 80, 1628 (2002)

    Article  ADS  Google Scholar 

  7. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007)

    Article  ADS  Google Scholar 

  8. J. Luo, P.A. Maggard, Hydrothermal synthesis and photocatalytic activity of coated Fe2O3 and BiFeO3. Adv. Mater. 18, 514–517 (2006)

    Article  Google Scholar 

  9. F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu, Preparation and photoabsorption characterization of BiFeO3 nanowires. Appl. Phys. Lett. 89, 102506 (2006)

    Article  ADS  Google Scholar 

  10. J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, BiFeO3: a review on synthesis, doping and crystal structure. Integr. Ferroelectr. 126, 47–59 (2011)

    Article  Google Scholar 

  11. M. Muneeswaran, P. Jegatheesan, M. Gopiraman, I.-S. Kim, N.V. Giridharan, Structural, optical, and multiferroic properties of single phased BiFeO3. Appl. Phys. A Mater. 114, 853–859 (2013)

    Article  ADS  Google Scholar 

  12. P. Priyadharsini, A. Pradeep, C. Murugesan, P.M. Md Gazzali, G. Chandrasekaran, Phase evolution in BiFeO3 nanoparticles prepared by glycine-assisted combustion method. Combust. Sci. Technol. 186, 297–312 (2014)

    Article  Google Scholar 

  13. J. Prado-Gonjal, M.E. Villafuerte-Castrejon, L. Fuentes, E. Moran, Microwave–hydrothermal synthesis of the multiferroic BiFeO3. Mater. Res. Bull. 44, 1734–1737 (2009)

    Article  Google Scholar 

  14. S. Shabani, S.M. Mirkazemi, S.M. Masoudpanah, P.T. Dolat Abadi, Synthesis and characterization of pure single phase BiFeO3 nanoparticles by the glyoxylate precursor method. J. Supercond. Nov. Magn. 27, 2795–2801 (2014)

    Article  Google Scholar 

  15. M.M. Rashad, Effect of synthesis conditions on the preparation of BiFeO3 nanopowders using two different methods. J. Mater. Sci. Mater. Electron. 23, 882–888 (2012)

    Article  Google Scholar 

  16. C. Fu, X. Long, W. Cai, G. Chen, X. Deng, Structural and magnetic properties of bismuth ferrite nanopowders prepared via sol–gel method. Ferroelectrics 460, 157–161 (2014)

    Article  Google Scholar 

  17. S. Sharma, V. Singh, R.K. Kotnala, R.K. Dwivedi, Comparative studies of pure BiFeO3 prepared by sol–gel versus conventional solid-state-reaction method. J. Mater. Sci. Mater. Electron. 25, 1915–1921 (2014)

    Article  Google Scholar 

  18. S.M. Selbach, M.A. Einarsrud, T. Tybell, T. Grande, Synthesis of BiFeO3 by wet chemical methods. J. Am. Ceram. Soc. 90, 3430–3434 (2007)

    Article  Google Scholar 

  19. T. Liu, Y. Xu, J. Zhao, Low-temperature synthesis of BiFeO3 via PVA sol–gel route. J. Am. Ceram. Soc. 93, 3637–3641 (2010)

    Article  Google Scholar 

  20. F. Huang, Z. Wang, X. Lu, J. Zhang, K. Min, W. Lin, R. Ti, T. Xu, J. He, C. Yue, J. Zhu, Peculiar magnetism of BiFeO3 nanoparticles with size approaching the period of the spiral spin structure. Sci. Rep. 3, 2907 (2013)

    ADS  Google Scholar 

  21. S. Vijayanand, M.B. Mahajan, H.S. Potdar, P.A. Joy, Magnetic characteristics of nanocrystalline multiferroic BiFeO3 at low temperatures. Phys. Rev. B 80, 064423 (2009)

    Article  ADS  Google Scholar 

  22. A. Jaiswal, R. Das, K. Vivekanand, P. Abraham, S. Adyanthaya, P. Poddar, Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J. Phys. Chem. C 114, 2108–2115 (2010)

    Article  Google Scholar 

  23. M.S. Bernardo, T. Jardiel, M. Peiteado, F.J. Mompean, M.G. Hernandez, M.A. Garcia, M. Villegas, A.C. Caballero, Intrinsic compositional inhomogeneities in bulk Ti-doped BiFeO3: microstructure development and multiferroic properties. Chem. Mater. 25, 1533–1541 (2013)

    Article  Google Scholar 

  24. L.W. Tai, P.A. Lessing, Modified resin intermediate processing of perovskite powders. Part II. Processing for fine, nonagglomerated Sr-doped lanthanum chromite powders. J. Mater. Res. 7, 511–519 (1992)

    Article  ADS  Google Scholar 

  25. A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS) (Los Alamos National Laboratory Report LAUR, 2004), pp. 86–748

  26. G. Suresh, D. Rajan Babu, A simple wet-chemical approach to synthesize shape controlled high magnetic moment Fe71–Co29 nanocrystals. J. Alloys Compd. 509, 10145–10149 (2011)

    Article  Google Scholar 

  27. J.A. Gomes, M.H. Sousa, G.J. da Silva, F.A. Tourinho, J. Mestnik-Filho, R. Itri, G.de M. Azevedo, J. Depeyrot, Cation distribution in copper ferrite nanoparticles of ferrofluids: a synchrotron XRD and EXAFS investigation. J. Magn. Magn. Mater. 300, e213–e216 (2006)

    Article  ADS  Google Scholar 

  28. J.L. Mi, T.N. Jensen, M. Christensen, C. Tyrsted, J.E. Jørgensen, B.B. Iversen, High-temperature and high-pressure aqueous solution formation, growth, crystal structure, and magnetic properties of BiFeO3 nanocrystals. Chem. Mater. 23, 1158–1165 (2011)

    Article  Google Scholar 

  29. C.T. Munoz, J.P. Rivera, A. Bezinges, A. Monnier, H. Schmid, Measurement of the quadratic magnetoelectric effect on single crystalline BiFeO3. Jpn. J. Appl. Phys. Suppl. 24, 1051–1053 (1985)

    Article  Google Scholar 

  30. T. Xian, H. Yang, X. Shen, J.L. Jiang, Z.Q. Wei, W.J. Feng, Preparation of high-quality BiFeO3 nanopowders via a polyacrylamide gel route. J. Alloys Compd. 480, 889–892 (2009)

    Article  Google Scholar 

  31. J. Shao, Y. Tao, J. Wang, C. Xu, W.G. Wang, Investigation of precursors in the preparation of nanostructured La0.6Sr0.4Co0.2Fe0.8O3−δ via a modified combined complexing method. J. Alloys Compd. 484, 263–267 (2009)

    Article  Google Scholar 

  32. H. Yang, T. Xian, Z.Q. Wei, J.F. Dai, J.L. Jiang, W.J. Feng, Size-controlled synthesis of BiFeO3 nanoparticles by a soft-chemistry route. J. Sol-Gel. Sci. Technol. 58, 238–243 (2011)

    Article  Google Scholar 

  33. K. Nakanishi, P.H. Solomon, Infrared Absorption Spectroscopy (Holden Day, San Franciso, 1977)

    Google Scholar 

  34. G.V.S. Rao, C.N.R. Rao, J.R. Ferraro, Infrared and electronic spectra of rare earth perovskites: ortho-chromites, manganites and ferrites. Appl. Spectrosc. 24, 436–445 (1970)

    Article  ADS  Google Scholar 

  35. S. Chikazumi, Physics of Ferromagnetism, 2nd edn. (Oxford university Press, Oxford, 1997), p. 31

    Google Scholar 

  36. M.E. Castillo, V.V. Shvartsman, D. Gobeljic, Y. Gao, J. Landers, H. Wende, D.C. Lupascu, Effect of particle size on ferroelectric and magnetic properties of BiFeO3 nanopowders. Nanotechnology 24, 355701 (2013)

    Article  Google Scholar 

  37. T.Y. Kim, N.H. Hong, T. Sugawara, A.T. Raghavender, M. Kurisu, Room temperature ferromagnetism with large magnetic moment at low field in rare-earth-doped BiFeO3 thin films. J. Phys. Condens. Matter 25, 206003 (2013)

    Article  ADS  Google Scholar 

  38. G.S. Lotey, N.K. Verma, Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size. J. Nanopart. Res. 14, 742 (2012)

    Article  Google Scholar 

  39. K. Chakrabarti, K. Das, B. Sarkar, S.K. De, Magnetic and dielectric properties of Eu-doped BiFeO3 nanoparticles by acetic acid-assisted sol–gel method. J. Appl. Phys. 110, 103905 (2011)

    Article  ADS  Google Scholar 

  40. A. Chaudhuri, K. Mandal, Enhancement of ferromagnetic and dielectric properties of lanthanum doped bismuth ferrite nanostructures. Mater. Res. Bull. 47, 1057–1061 (2012)

    Article  Google Scholar 

  41. M.B. Bellakki, V. Manivannan, C. Madhu, A. Sundaresan, Synthesis and magnetic properties of BiFeO3 and Bi0.98Y0.02FeO3. Mater. Chem. Phys. 116, 599–602 (2009)

    Article  Google Scholar 

  42. M.K. Singh, W. Prellier, M.P. Singh, R.S. Katiyar, J.F. Scott, Spin-glass transition in single-crystal BiFeO3. Phys. Rev. B 77, 144403 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

R. K and S. V. V thank the University Grants Commission (UGC), Government of India, for the financial support through the Major Research Project (MRP) F. No. 42-827/2013(SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Vijayasundaram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayasundaram, S.V., Suresh, G. & Kanagadurai, R. Synthesis, thermal, structural, and magnetic properties of phase-pure nanocrystalline BiFeO3 via wet chemical route. Appl. Phys. A 121, 681–688 (2015). https://doi.org/10.1007/s00339-015-9454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9454-z

Keywords

Navigation