Skip to main content
Log in

Enhanced photocatalytic activity of hydrothermally grown BiFeO3 nanostructures and role of catalyst recyclability in photocatalysis based on magnetic framework

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The photocatalytic activity of bismuth ferrite (BiFeO3: BFO) nanostructures on the degradation of methyl violet 2B (MV) is demonstrated for the first time under sunlight irradiation with the efficiency of 97.6 %. The photocatalytic BFO nanostructures have been successfully synthesized through hydrothermal method. Initial characterization of BFO nanostructures such as structural, functional, morphological, optical, and magnetic properties has been performed. From the X-ray diffraction analysis, the synthesized nanostructures are found to have rhombohedral structure with R3c space group confirmed by Rietveld analysis. The formation of perovskite structure is confirmed through FTIR analysis. Nanostructures were found to have rod-like morphology with the length between 15 and 20 nm and diameter of about 2–3 nm measured through HR-TEM. The surface area and N2 adsorption–desorption isotherms have been preformed through BET analysis. The optical band gap investigation shows that the E g value of BFO is about 2.1 eV. The magnetization measurements revealed a weak ferromagnetic behavior at room temperature, and the same has been confirmed through ABK plot. The photocatalytic activity of BFO is tested on the degradation of harmful MV dye under the irradiation of direct sunlight, influences of oxygen, and hydrogen peroxide. The photodecomposition kinetics of MV has been described through Langmuir–Hinshelwood model. The stability and recyclability of catalyst have also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X.B. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  2. H.J. Zhang, G.H. Chen, D.W. Bahnemann, J. Mater. Chem. 19, 5089 (2009)

    Article  Google Scholar 

  3. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  ADS  Google Scholar 

  4. R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, Phys. Rev. B 77, 014110 (2008)

    Article  ADS  Google Scholar 

  5. X.Y. Chen, T. Yu, F. Gao, H.T. Zhang, L.F. Liu, Y.M. Wang, Z.S. Li, Z.G. Zou, J.M. Liu, Appl. Phys. Lett. 91, 022114 (2007)

    Article  ADS  Google Scholar 

  6. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, J. Mater. Chem. A. 3, 2485 (2015)

    Article  Google Scholar 

  7. I. Papadas, J.A. Christodoulides, G. Kioseoglou, G.S. Armatas, J. Mater. Chem. A. 3, 1587 (2015)

    Article  Google Scholar 

  8. A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253 (2009)

    Article  Google Scholar 

  9. X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110, 6503 (2010)

    Article  Google Scholar 

  10. S. Li, Y.-H. Lin, B.-P. Zhang, Y. Wang, C.-W. Nan, J. Phys. Chem. C 114, 2903 (2010)

    Article  Google Scholar 

  11. F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, J.-M. Liu, Adv. Mater. 19, 2889 (2007)

    Article  Google Scholar 

  12. W. Wang, N. Li, Y. Chi, Y. Li, W. Yan, X. Li, C. Shao, Ceram. Int. 39, 3511 (2013)

    Article  Google Scholar 

  13. S. Mohan, B. Subramanian, G. Sarveswaran, J. Mater. Chem. C. 2, 6835 (2014)

    Article  Google Scholar 

  14. Z. Liu, Y. Qi, L. Chaojing, J. Mater. Sci.: Mater. Electron. 21, 380 (2010)

    ADS  Google Scholar 

  15. S. Li, M. Jianming Zhang, G. Kibria, Z. Mi, M. Chaker, D. Ma, R. Nechache, F. Rosei, Chem. Commun. 49, 5856 (2013)

    Article  Google Scholar 

  16. X. Wang, W. Mao, J. Zhang, Y. Han, C. Quan, Q. Zhang, T. Yang, J. Yang, X.A. Li, W. Huang, J. Colloid Interface Sci. 448, 17 (2015)

    Article  Google Scholar 

  17. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766 (2007)

    Article  ADS  Google Scholar 

  18. Q. Jiang, C. Nan, Y. Wang, Y. Liu, J. Electroceram. 21, 690 (2008)

    Article  Google Scholar 

  19. D. Maurya, H. Thota, K.S. Nalwa, A. Garg, J. Alloys Compd. 477, 780 (2009)

    Article  Google Scholar 

  20. T. Soltani, M.H. Entezari, J. Mol. Catal. A: Chem. 377, 197 (2013)

    Article  Google Scholar 

  21. I. Sires, E. Guivarch, N. Oturan, M.A. Oturan, Chemosphere 72, 592 (2008)

    Article  Google Scholar 

  22. A. Mittal, V. Gajbe, J. Mittal, J. Hazard. Mater. 150, 364 (2008)

    Article  Google Scholar 

  23. C.T. Munoz, J.P. Rivera, A. Monnier, H. Schmid, J. Appl. Phys. Suppl. 24, 1051 (1985)

    Article  Google Scholar 

  24. J.S. Lee, R.J. De Angelis, Nanostruct. Mater. 7, 805 (1996)

    Article  Google Scholar 

  25. Z. Chen, C. Huang, Y. Qi, P. Yang, L. You, C. Hu, T. Wu, J. Wang, C. Gao, T. Sritharan, L. Chen, Adv. Funct. Mater. 21, 133 (2011)

    Article  Google Scholar 

  26. A.Z. Simoes, B.D. Stojanovic, M.A. Ramirez, A.A. Cavalheiro, E. Longo, J.A. Varela, Ceram. Int. 34, 257 (2008)

    Article  Google Scholar 

  27. Z.V. Gabbasova, M.D. Kuz’min, A.K. Zvezdin, I.S. Dubenko, V.A. Murashov, D.N. Rakov, I.B. Krynetsky, Phys. Lett. A 158, 491 (1991)

    Article  ADS  Google Scholar 

  28. A.V. Zalesskii, A.A. Frolov, T.A. Khimich, A.A. Bush, Phys. Solid State 45, 134 (2003)

    Article  ADS  Google Scholar 

  29. A. Mukherjee, S.M. Hossain, M. Pal, S. Basu, Appl. Nanosci. 2, 305 (2012)

    Article  ADS  Google Scholar 

  30. S. Ghosh, S. Dasgupta, A. Sen, H.S. Maiti, Mater. Res. Bull. 40, 2073 (2005)

    Article  Google Scholar 

  31. J. Lingling, Z. Chen, L. Fang, W. Dong, F. Zheng, M. Shen, J. Am. Ceram. Soc. 94, 3418 (2011)

    Article  Google Scholar 

  32. D. Lee, M.G. Kim, S. Ryu, H.M. Jang, S.G. Lee, Appl. Phys. Lett. 86, 222903 (2005)

    Article  ADS  Google Scholar 

  33. J.F. Li, J.L. Wang, M. Wutiig, R. Ramesh, N.G. Wang, B. Ruette, A.P. Pyatakov, A.K. Zvezdin, D. Viehland, Appl. Phys. Lett. 84, 5261 (2004)

    Article  ADS  Google Scholar 

  34. G.V. Subba Rao, C.N.R. Rao, J.R. Ferraro, Appl. Spectrosc. 24, 436 (1970)

    Article  ADS  Google Scholar 

  35. A. Fidalgo, L.M. Ilharco, J. Non-Cryst. Solids 283, 144 (2001)

    Article  ADS  Google Scholar 

  36. H. Wang, J.J. Zhu, J.M. Zhu, X.H. Liao, S. Xu, T. Ding, H.Y. Chen, Phys. Chem. Chem. Phys. 4, 3794 (2002)

    Article  Google Scholar 

  37. S. Li, Y.-H. Lin, B.-P. Zhang, Y. Wang, C.-W. Nan, J. Phys. Chem. C 114, 2903 (2010)

    Article  Google Scholar 

  38. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)

    Article  Google Scholar 

  39. J. Liu, Y. Lu, J. Liu, X. Yang, X. Yu, J. Alloys Compd. 496, 261 (2010)

    Article  ADS  Google Scholar 

  40. M. Oshikiri, M. Boero, J.H. Ye, J. Chem. Phys. 117, 7313 (2002)

    Article  ADS  Google Scholar 

  41. J.W. Tang, Z.G. Zou, J.H. Ye, Angew. Chem. Int. Ed. 43, 4463 (2004)

    Article  Google Scholar 

  42. H.G. Kim, D.W. Hwang, J.S. Lee, J. Am. Chem. Soc. 126, 8912 (2004)

    Article  Google Scholar 

  43. H.B. Fu, C.S. Pan, W.Q. Yao, Y.F. Zhu, J. Phys. Chem. B. 109, 22432 (2005)

    Article  Google Scholar 

  44. Y. Ma, J.-N. Yao, J. Photochem. Photobiol. A Chem. 116, 167 (1998)

    Article  Google Scholar 

  45. J.-M. Wu, T.-W. Zhang, J. Photochem. Photobiol. A Chem. 162, 171 (2004)

    Article  Google Scholar 

  46. T. Watanabe, T. Takizawa, K. Honda, J. Phys. Chem. 81, 1845 (1977)

    Article  Google Scholar 

  47. P. Qu, J. Zhao, T. Shen, H. Hidaka, J. Mol. Catal. A: Chem. 129, 257 (1998)

    Article  Google Scholar 

  48. S. Bingham, W.A. Daoud, J. Mater. Chem. 21, 2041 (2011)

    Article  Google Scholar 

  49. R.J. Tayade, T.S. Natarajan, H.C. Bajaj, Ind. Eng. Chem. Res. 48, 10262 (2009)

    Article  Google Scholar 

  50. C.S. Turchi, D.F. Ollis, J. Catal. 122, 178 (1990)

    Article  Google Scholar 

  51. D.H. Tseng, L.C. Juang, H.H. Huang, Int. J. Photoenergy 1, 328526(1) (2012)

    Google Scholar 

  52. N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A Chem. 157, 111 (2003)

    Article  Google Scholar 

  53. D.D. Dionysiou, M.T. Suidan, I. Baudin, J.M. Laine, Appl. Catal. B 50, 259 (2004)

    Article  Google Scholar 

  54. S. Malato, J. Blanco, C. Richter, B. Braun, M.I. Maldonado, Appl. Catal. B Environ. 17, 347 (1998)

    Article  Google Scholar 

  55. Y. Wang, C.S. Hong, F. Fang, Environ. Eng. Sci. 16, 433 (1999)

    Article  Google Scholar 

  56. W. Luo, L. Zhu, N. Wang, H. Tang, M. Cao, Y. She, Environ. Sci. Technol. 44, 1786 (2010)

    Article  ADS  Google Scholar 

  57. R. Guo, L. Fang, W. Dong, F. Zheng, M. Shen, J. Mater. Chem. 21, 18645 (2011)

    Article  Google Scholar 

  58. Z.F. Bian, Y.N. Huo, Y. Zhang, J. Zhu, Y.F. Lu, H.X. Li, Appl. Catal. B 91, 247 (2009)

    Article  Google Scholar 

  59. D.A. Chang, P. Lin, T.Y. Tseng, J. Appl. Phys. 77, 4445 (1995)

    Article  ADS  Google Scholar 

  60. Y.N. Huo, Y. Jin, Y. Zhang, J. Mol. Catal. A: Chem. 331, 15 (2010)

    Article  Google Scholar 

  61. Y. Galagan, W.F. Su, J. Photochem. Photobiol., A 195, 378 (2008)

    Article  Google Scholar 

  62. S.K. Kansal, M. Singh, D. Sud, J. Hazard. Mater. 141, 581 (2007)

    Article  Google Scholar 

  63. Z.F. Bian, Y.N. Huo, Y. Zhang, J. Zhu, Y.F. Lu, H.X. Li, Appl. Catal. B Environ. 91, 247 (2009)

    Article  Google Scholar 

  64. D. Severino, H.C. Junquera, M. Guglliotti, D.S. Gabrielli, M.S. Baptista, J. Photochem. Photobiol. 77, 459 (2003)

    Article  Google Scholar 

  65. A. Mills, R.H. Davis, D. Worsley, Chem. Soc. Rev. 22, 417 (1993)

    Article  Google Scholar 

  66. J.-M. Herrmann, Catal. Today 53, 115 (1999)

    Article  Google Scholar 

  67. R. Mazumder, P. Sujatha Devi, P. Dipten Bhattacharya, A.Sen Choudhury, Appl. Phys. Lett. 91, 062510 (2007)

    Article  ADS  Google Scholar 

  68. W. Jiangtao, S. Mao, Z.-G. Ye, Z. Xiea, L. Zhenga, J. Mater. Chem. 20, 6512 (2010)

    Article  Google Scholar 

  69. D. Lebeugle, D. Colson, A. Forget, M. Viret, A.M. Bataille, A. Gukasov, Phys. Rev. Lett. 100, 227602 (2008)

    Article  ADS  Google Scholar 

  70. J. Schneider, A. Handstein, K. Zaveta, J. Magn. Magn. Mater. 43, 73 (1984)

    Article  ADS  Google Scholar 

  71. T.K. Nath, N. Sudhakar, E.J. McNiff, A.K. Majumdar, Phys. Rev. B 55, 12389 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge DST, Government of India, for VSM under FIST (SR/FST/PSI-117/2007) program sanctioned to Physics Department, NIT, Tiruchirappalli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Giridharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanalakshmi, R., Muneeswaran, M., Vanga, P.R. et al. Enhanced photocatalytic activity of hydrothermally grown BiFeO3 nanostructures and role of catalyst recyclability in photocatalysis based on magnetic framework. Appl. Phys. A 122, 13 (2016). https://doi.org/10.1007/s00339-015-9527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9527-z

Keywords

Navigation