Skip to main content
Log in

The effect of pH on the synthesis of stable Cu2O/CuO nanoparticles by sol–gel method in a glycolic medium

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we demonstrate that using a glycolic medium, both stable CuO and Cu2O nanoparticles can be elaborated from Cu colloidal particles by adjusting their chemical environment, in particular the acido-basicity of the solution. In this context, the effect of pH on the sol–gel synthesis of Cu2O/CuO NPs was investigated. XRD results confirmed the formation of pure Cu2O with a cubic structure at lower pH (pH ≤ 6), whereas the pure monoclinic CuO was formed at higher pH (pH ≥ 12). TEM image indicates that the as-formed CuO NPs in basic pH are spherical in shape and their average size is found to be in the range of 4.5 nm. However, the as-obtained Cu2O NPs in acid pH are cubical, with an average diameter of about 3 nm, and agglomerated into large spherical particles under the effect of ethylene glycol. Using the UV–Vis spectroscopy, the measured band gap energies of the prepared Cu2O and CuO NPs are 2.07 and 4.08 eV respectively. FTIR results confirm the purity of the synthesized CuO and Cu2O nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. El-Sayed, Acc. Chem. Res. 37, 326 (2004)

    Article  Google Scholar 

  2. A.P. Alivisatos, Endeavour 21, 56 (1997)

    Article  Google Scholar 

  3. A.P. Alivisatos, Science (1996). doi:10.1126/science.271.5251.933

    Google Scholar 

  4. X. Chen, S.S. Mao, Chem. Rev. 107, 2959 (2007)

    Google Scholar 

  5. Z.L. Wang, J. Phy. Condens. Matter 16, 858 (2004)

    Google Scholar 

  6. H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Adv. Funct. Mater. (2011). doi:10.1002/adfm.201002477

    Google Scholar 

  7. J. Pan, H. Shen, S. Mathur, J. Nanotechnol. (2012). doi:10.1155/2012/917320

    Google Scholar 

  8. A. Cruccolini, R. Narducci, R. Palombari, Sens. Actuators B: Chemical (2004). doi:10.1016/j.snb.2003.10.012

    Google Scholar 

  9. A.O. Musa, T. Akomolafe, M.J. Carter, Sol. Energy Mater. Sol. Cells 51, 305 (1998)

    Article  Google Scholar 

  10. X.G. Zheng, C.N. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, Y. Soejima, Phys. Rev. Lett. 85, 5170 (2000)

    Article  ADS  Google Scholar 

  11. X. Zhang, D. Zhang, X. Ni, H. Zheng, Solid-State Electronics 52, 245 (2008)

    Article  ADS  Google Scholar 

  12. L.P. Zhou, B.X. Wang, X.F. Peng, X.Z. Du, Y.P. Yang, Adv. Mech. Eng. (2010). doi:10.1155/2010/172085

    Google Scholar 

  13. S. Seung-Deok, J. Yun-Ho, L. Seung-Hun, S. Hyun-Woo, K. Dong-Wan, Nanoscale Res. Lett. 6, 2 (2011)

    Google Scholar 

  14. Y. Jiang, S. Decker, C. Mohs, K.J. Klabunde, J. Catal. 180, 24 (1998)

    Article  Google Scholar 

  15. C.H.B. Ng, W.Y. Fan, J. Phys. Chem. B 110, 20801 (2006)

    Article  Google Scholar 

  16. C.-H. Kuo, M.H. Huang, J. Phys. Chem. C 112, 18355 (2008)

    Article  Google Scholar 

  17. J.-Y. Ho, M.H. Huang, J. Phys. Chem. C 113, 14159 (2009)

    Article  Google Scholar 

  18. C.-H. Kuo, C.-H. Chen, M.H. Huang, Adv. Funct. Mater. 17, 3773 (2007)

    Article  Google Scholar 

  19. B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. Rahman, N. Turro, S. O’Brien, Nano Lett. 6, 2095 (2006)

    Article  ADS  Google Scholar 

  20. M. Hara, T. Kondo, M. Komoda, S. Ikeda, J.N. Kondo, K. Domen, K. Shinohara, A. Tanaka, Chem. Commun. (1998). doi:10.1039/A707440I

    Google Scholar 

  21. C.M. McShane, K.S. Choi, J. Am. Chem. Soc. 131, 2561 (2009)

    Article  Google Scholar 

  22. Z. Yang, C.K. Chiang, H.T. Chang, Nanotechnology (2008). doi:10.1088/0957-4484/19/02/025604

    Google Scholar 

  23. C. Xu, Y. Liu, G. Xu, G. Wang, Mater. Res. Bull. 37, 2365 (2002)

    Article  Google Scholar 

  24. R.V. Kumar, Y. Diamant, A. Gendanken, Chem. Mater. 12, 2301 (2000)

    Article  Google Scholar 

  25. R.V. Kumar, Y. Diamant, A. Gendanken, R. Elgamiel, Langmuir 17, 1406 (2001)

    Article  Google Scholar 

  26. H. Xu, W. Wang, W. Zhu, Micro. Meso. Mater. 95, 321 (2006)

    Article  Google Scholar 

  27. L. Gou, C. Murphy, J. Nano Lett. 3, 231 (2003)

    Article  ADS  Google Scholar 

  28. J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Chem. Mater. 18, 867 (2006)

    Article  Google Scholar 

  29. J.C. Park, J. Kim, H. Kwon, H. Song, Adv. Mater. 21, 803 (2009)

    Article  Google Scholar 

  30. Brinker J, Scherer GW (1990) Academic Press, New York

  31. W.Z. Wang, O.K. Varghese, C.M. Ruan, M. Paulose, C.A. Grimes, J. Mater. Res. 18, 2756 (2003)

    Article  ADS  Google Scholar 

  32. A. Li, P. Li, J. Hu, W. Zhang, J. Mater. Sci.: Mater. Electron. 26, 5071 (2015)

    Google Scholar 

  33. X. Deng, Q. Zhang, Q. Zhao, L. Ma, M. Ding, X. Xu, Nanoscale Res. Lett. 10, 2 (2015)

    Article  ADS  Google Scholar 

  34. B. Jaber, L. Laânab, Mater. Sci. Semicond. Process. 27, 446 (2014)

    Article  Google Scholar 

  35. M. Cao, C. Hu, Y. Wang, Y. Guo, C. Guo, E. Wang, Chem. Commun. 15, 1884 (2003)

    Article  Google Scholar 

  36. S. Pande, S. Jana, A.K. Sinha, A. Datta, T. Pal, J. Phys. Chem. C 112, 3619 (2008)

    Article  Google Scholar 

  37. M. Kooti, L. Matouri, Tran. F : Nanotechnology 17, 73 (2010)

    Google Scholar 

  38. G. Kliche, Z.V. Popovic, Phys Rev B 42, 10060 (1990)

    Article  ADS  Google Scholar 

  39. Y.C. Zhang, J.Y. Tang, G.L. Wang, M. Zhang, X.Y. Hu, J. Cryst. Growth 294, 278 (2006)

    Article  ADS  Google Scholar 

  40. I. Prakash, P. Muralidharan, N. Nallamuthu, M. Venkateswarlu, N. Satyanarayana, Mater. Res. Bull. 42, 1619 (2007)

    Article  Google Scholar 

  41. O. Game, U. Singh, A.A. Gupta, A. Suryawanshi, A. Banpurkar, S. Ogale, J. Mater. Chem. 22, 17302 (2012)

    Article  Google Scholar 

  42. A. Patra, K. Rajesh, T.P. Radhakrishnan, Bull. Mater. Sci. 31, 421 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zayyoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayyoun, N., Bahmad, L., Laânab, L. et al. The effect of pH on the synthesis of stable Cu2O/CuO nanoparticles by sol–gel method in a glycolic medium. Appl. Phys. A 122, 488 (2016). https://doi.org/10.1007/s00339-016-0024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0024-9

Keywords

Navigation