Skip to main content

Advertisement

Log in

Periodic structure formation and surface morphology evolution of glassy carbon surfaces applying 35-fs–200-ps laser pulses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work laser-induced periodic structures with lateral dimensions smaller than the central wavelength of the laser were studied on glassy carbon as a function of laser pulse duration. To generate diverse pulse durations titanium–sapphire (Ti:S) laser (center wavelength 800 nm, pulse durations: 35 fs–200 ps) and a dye–KrF excimer laser system (248 nm, pulse durations: 280 fs, 2.1 ps) were used. In the case of Ti:S laser treatment comparing the central part of the laser-treated areas a striking difference is observed between the femtoseconds and picoseconds treatments. Ripple structure generated with short pulse durations can be characterized with periodic length significantly smaller than the laser wavelength (between 120 and 165 nm). At higher pulse durations the structure has a higher periodic length (between 780 and 800 nm), which is comparable to the wavelength. In case of the excimer laser treatment the different pulse durations produced similar surface structures with different periodic length and different orientation. One of the structures was parallel with the polarization of the laser light and has a higher periodic length (~335 nm), and the other was perpendicular with smaller periodic length (~78–80 nm). The possible mechanisms of structure formation will be outlined and discussed in the frame of our experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.V. Iyengar, B.K. Nayak, K.L. More, H.M. Meyer, M.D. Biegalski, J.V. Li, M.C. Gupta, Solar Energy Mater. Solar Cells 95, 2745 (2011)

    Article  Google Scholar 

  2. B.G. Lee, L. Yu-Ting, S. Meng-Ju, E. Mazur, H. M. Branz, Y.-T. Lin, M.-J. Sher, in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 1606

  3. V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, C. Fotakis, Nanotechnology 17, 3234 (2006)

    Article  ADS  Google Scholar 

  4. T. Baldacchini, J.E. Carey, M. Zhou, E. Mazur, Langmuir 22, 4917 (2006)

    Article  Google Scholar 

  5. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24, 042006 (2012)

    Article  ADS  Google Scholar 

  6. G. Miyaji, K. Zhang, J. Fujita, K. Miyazaki, J. Laser Micro/Nanoeng. 7, 198 (2012)

    Article  Google Scholar 

  7. T.J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, J. Bonse, J. Appl. Phys. 116, 074902 (2014)

    Article  ADS  Google Scholar 

  8. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, ACS Nano 3, 4062 (2009)

    Article  Google Scholar 

  9. G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Phys. Rev. B 86, 115316 (2012)

    Article  ADS  Google Scholar 

  10. Y. Han, S. Qu, Chem. Phys. Lett. 495, 241 (2010)

    Article  ADS  Google Scholar 

  11. J. Csontos, Z. Pápa, A. Gárdián, M. Füle, J. Budai, Z. Toth, Appl. Surf. Sci. 336, 343 (2015)

    Article  ADS  Google Scholar 

  12. T.J.-Y. Derrien, J. Krüger, T.E. Itina, S. Höhm, A. Rosenfeld, J. Bonse, Opt. Express 21, 29643 (2013)

    Article  ADS  Google Scholar 

  13. T.J.-Y. Derriena, R. Torresa, T. Sarneta, M. Sentisa, T.E. Itina, Appl. Surf. Sci. 258, 9487 (2012)

    Article  ADS  Google Scholar 

  14. M. Füle, A. Gárdián, J. Budai, Z. Tóth, J. Laser Micro/Nanoeng. 10, 74 (2015)

    Article  Google Scholar 

  15. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27, 1141 (1983)

    Article  ADS  Google Scholar 

  16. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, K. Wang, Appl. Phys. Lett. 82, 1703 (2003)

    Article  ADS  Google Scholar 

  17. M. Pfeiffer, A. Engel, H. Gruettner, K. Guenther, F. Marquardt, G. Reisse, S. Weissmantel, Appl. Phys. A Mater. Sci. Process. 110, 655 (2013)

    Article  ADS  Google Scholar 

  18. M. Csete, Z. Bor, Appl. Surf. Sci. 133, 5 (1998)

    Article  ADS  Google Scholar 

  19. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, Phys. Rev. B 79, 125436 (2009)

    Article  ADS  Google Scholar 

  20. E.L. Gurevich, S.V. Gurevich, Appl. Surf. Sci. 302, 118 (2014)

    Article  ADS  Google Scholar 

  21. E.L. Gurevich, Appl. Surf. Sci. 278, 52 (2013)

    Article  ADS  Google Scholar 

  22. V.I. Emelyanov, V.N. Seminogov, Kvantovaya Elektron. Mosc. 11, 871 (1984)

    ADS  Google Scholar 

  23. W. Zhang, G. Cheng, Q. Feng, Appl. Surf. Sci. 263, 436 (2012)

    Article  ADS  Google Scholar 

  24. J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Appl. Surf. Sci. 197, 891 (2002)

    Article  ADS  Google Scholar 

  25. O. Varlamova, F. Costache, J. Reif, M. Bestehorn, Appl. Surf. Sci. 252, 4702 (2006)

    Article  ADS  Google Scholar 

  26. F. Costache, M. Henyk, J. Reif, Appl. Surf. Sci. 208(209), 486 (2003)

    Article  ADS  Google Scholar 

  27. S. Szatmári, Appl. Phys. B 58, 211 (1994)

    Article  ADS  Google Scholar 

  28. T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, D. Kaplan, Appl. Phys. B 99, 7 (2010)

    Article  ADS  Google Scholar 

  29. P. Tournois, Opt. Commun. 140, 245 (1997)

    Article  ADS  Google Scholar 

  30. A. Borzsonyi, A.P. Kovacs, K. Osvay, Appl. Sci. 3, 515 (2013)

    Article  Google Scholar 

  31. Z. Toth, I. Hanyecz, A. Gardian, J. Budai, J. Csontos, Z. Papa, M. Füle, Thin Solid Films 571, 631 (2014)

    Article  ADS  Google Scholar 

  32. A. Borowiec, H.K. Haugen, Appl. Phys. Lett. 82, 4462 (2003)

    Article  ADS  Google Scholar 

  33. D. Dufft, A. Rosenfeld, S.K. Das, R. Grunwald, J. Bonse, J. Appl. Phys. 105, 034908 (2009)

    Article  ADS  Google Scholar 

  34. T.Q. Jia, H.X. Chen, M. Huang, F.L. Zhao, J.R. Qiu, R.X. Li, Z.Z. Xu, X.K. He, J. Zhang, H. Kuroda, Phys. Rev. B 72, 125429 (2005)

    Article  ADS  Google Scholar 

  35. J. Bonse, M. Munz, H. Sturm, J. Appl. Phys. 97, 013538 (2015)

    Article  ADS  Google Scholar 

  36. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, F. Stracke, Opt. Lett. 36, 229 (2011)

    Article  ADS  Google Scholar 

  37. G. Miyaji, K. Miyazaki, Opt. Express 16, 16265 (2008)

    Article  ADS  Google Scholar 

  38. G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, J. Fujita, Opt. Express 20, 14848 (2012)

    Article  ADS  Google Scholar 

  39. E.V. Golosov, A.A. Ionin, YuR Kolobov, S.I. Kudryashov, A.E. Ligachev, S.V. Makarov, YuN Novoselov, L.V. Seleznev, D.V. Sinitsyn, A.R. Sharipov, Phys. Rev. B 83, 115426 (2011)

    Article  ADS  Google Scholar 

  40. M. Huang, F. Zhao, Y. Cheng, Z. Xu, Opt. Lett. 37, 677 (2012)

    Article  ADS  Google Scholar 

  41. A. Beltaos, A.G. Kovacevic, A. Matkovic, U. Ralevic, S. Savic-Sevic, D. Jovanovic, B.M. Jelenkovic, R. Gajic, J. Appl. Phys. 116, 204306 (2014)

    Article  ADS  Google Scholar 

  42. W. Zhang, M. Zhou, G. Amoako, Y-L. Shao, B-J. Li, J. Li, C-Y. Gao, Lasers Eng. 25, 397 (2013)

    Google Scholar 

  43. P.J.F. Harris, Philos. Mag. 84, 3159 (2004)

    Article  ADS  Google Scholar 

  44. E. Gamaly, Femtosecond Laser-Matter Interactions (Pan Stanford Publihing Pte. Ltd., Singapore, 2011)

    Google Scholar 

  45. D.O. Gericke, M.S. Murillo, M. Schlanges, Phys. Rev. E 65, 036418 (2002)

    Article  ADS  Google Scholar 

  46. M. Lyon, S.D. Bergeson, G. Hart, M.S. Murillo, Sci. Rep. 5, 15693 (2015). doi:10.1038/srep15693

    Article  ADS  Google Scholar 

Download references

Acknowledgments

One of the authors (M. Füle) is grateful for the support of the Hungarian Scientific Research Fund—OTKA K113222. The project was partially funded by “TÁMOP-4.2.2.D-15/1/KONV-2015-0024—‘ELITeam’—Establishment of the ELI Institute at the University of Szeged: foundation of interdisciplinary research in the field of lasers and their applications”, is supported by the European Union and co-financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Füle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csontos, J., Toth, Z., Pápa, Z. et al. Periodic structure formation and surface morphology evolution of glassy carbon surfaces applying 35-fs–200-ps laser pulses. Appl. Phys. A 122, 593 (2016). https://doi.org/10.1007/s00339-016-0083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0083-y

Keywords

Navigation