Skip to main content
Log in

A new method to predict the metadynamic recrystallization behavior in a typical nickel-based superalloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The metadynamic recrystallization (MDRX) behaviors of a typical nickel-based superalloy are investigated by two-pass hot compression tests and four conventional stress-based conventional approaches (offset stress method, back-extrapolation stress method, peak stress method, and mean stress method). It is found that the conventional stress-based methods are not suitable to evaluate the MDRX softening fractions for the studied superalloy. Therefore, a new approach, ‘maximum stress method,’ is proposed to evaluate the MDRX softening fraction. Based on the proposed method, the effects of deformation temperature, strain rate, initial average grain size, and interpass time on MDRX behaviors are discussed in detail. Results show that MDRX softening fraction is sensitive to deformation parameters. The MDRX softening fraction rapidly increases with the increase of deformation temperature, strain rate, and interpass time. The MDRX softening fraction in the coarse-grain material is lower than that in the fine-grain material. Moreover, the observed microstructures indicate that the initial coarse grains can be effectively refined by MDRX. Based on the experimental results, the kinetics equations are established and validated to describe the MDRX behaviors of the studied superalloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M. Hasan Nasab, S. Serajzadeh, Int. J. Adv. Manufact. Technol. 83, 1725 (2016)

    Article  Google Scholar 

  2. M. Seyed Salehi, S. Serajzadeh, Comput. Mater. Sci. 53, 145 (2012)

    Article  Google Scholar 

  3. Y.C. Lin, M.S. Chen, J. Zhong, Comput. Mater. Sci. 44, 316 (2008)

    Article  Google Scholar 

  4. F. Chen, Z.S. Cui, Modell. Simul. Mater. Sci. Eng. 20, 1 (2012)

    Google Scholar 

  5. F. Chen, Z.S. Cui, D.S. Sui, B. Fu, Mater. Sci. Eng., A 540, 46 (2012)

    Article  Google Scholar 

  6. G.Z. Quan, A. Mao, G.C. Luo, J.T. Liang, D.S. Wu, J. Zhou, Mater. Des. 52, 98 (2013)

    Article  Google Scholar 

  7. G.Z. Quan, Y. Wang, Y.Y. Liu, J. Zhou, Mater. Res. 16, 1092 (2013)

    Article  Google Scholar 

  8. X.P. Luo, L. Kang, Q.S. Li, Y.S. Chai, Appl. Phys. A 120, 699 (2015)

    Article  ADS  Google Scholar 

  9. D. Xu, B. Zheng, M.Y. Zhu, H.Y. Zhao, Metallurgist. 59, 899 (2016)

    Article  Google Scholar 

  10. L. Meng, M.H. Wang, X. Liu, F.L. Wang, Appl. Phys. A 122, 387 (2016)

    Article  ADS  Google Scholar 

  11. Y.C. Lin, L.T. Li, Y.C. Xia, Comput. Mater. Sci. 50, 2038 (2011)

    Article  Google Scholar 

  12. W. Zhang, J. Zhang, Y. Han, R. Liu, D.N. Zou, G.J. Qiao, J. Iron. Steel Res. Int. 23, 151 (2016)

    Article  Google Scholar 

  13. Y.C. Lin, M.S. Chen, Mater. Sci. Eng., A 501, 229 (2009)

    Article  Google Scholar 

  14. K.H. Jung, H.W. Lee, Y.T. Im, Mater. Sci. Eng., A 519, 94 (2009)

    Article  Google Scholar 

  15. L. Cheng, H. Chang, B. Tang, H. Kou, J. Li, Mater. Lett. 92, 430 (2013)

    Article  Google Scholar 

  16. S.H. Cho, K.B. Kang, J.J. Jonas, ISIJ Int. 41, 63 (2001)

    Article  Google Scholar 

  17. A.M. Elwazri, E. Essadiqi, S. Yue, ISIJ Int. 44, 744 (2004)

    Article  Google Scholar 

  18. Y.C. Lin, M.S. Chen, J. Zhong, J. Mater. Process. Technol. 209, 2477 (2009)

    Article  Google Scholar 

  19. H.P. Qi, Y.T. Li, Chinese J. Mech. Eng. 25, 853 (2012)

    Google Scholar 

  20. B. Ma, Y. Peng, Y.F. Liu, B. Jia, J. Cent, South Univ. Technol. 17, 911 (2010)

    Article  Google Scholar 

  21. S.D. Gu, C. Zhang, L.W. Zhang, W.F. Shen, J. Mater. Res. 30, 538 (2015)

    Article  ADS  Google Scholar 

  22. B.C. Zhao, T. Zhao, G.Y. Li, Q. Lu, Met. Mater. Int. 21, 692 (2015)

    Article  Google Scholar 

  23. D.X. Wen, Y.C. Lin, J. Chen, J. Deng, X.M. Chen, J.L. Zhang, M. He, Mater. Sci. Eng., A 620, 319 (2015)

    Article  Google Scholar 

  24. Y.C. Lin, D.X. Wen, J. Deng, G. Liu, J. Chen, Mater. Des. 59, 115 (2014)

    Article  Google Scholar 

  25. H. Dehghan, S.M. Abbasi, A. Momeni, A.K. Taheri, Alloys Compd. 564, 13 (2013)

    Article  Google Scholar 

  26. Q. Zuo, F. Liu, L. Wang, C.F. Chen, Z.H. Zhang, Prog. Nat. Sci. 25, 66 (2015)

    Article  Google Scholar 

  27. S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, U. Borah, J. Mater. Sci. 50, 6444 (2015)

    Article  ADS  Google Scholar 

  28. D.X. Wen, Y.C. Lin, H.B. Li, X.M. Chen, J. Deng, Mater. Sci. Eng., A 591, 183 (2014)

    Article  Google Scholar 

  29. Y.Q. Ning, M.W. Fu, X. Chen, Mater. Sci. Eng., A 540, 164 (2012)

    Article  Google Scholar 

  30. H.B. Zhang, K.F. Zhang, S.S. Jiang, Z. Lu, J. Mater. Res. 30, 1029 (2015)

    Article  ADS  Google Scholar 

  31. Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, L.T. Li, J. Alloys Compd. 640, 101 (2015)

    Article  Google Scholar 

  32. X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, M. He, Mater. Des. 57, 568 (2014)

    Article  Google Scholar 

  33. X.M. Chen, Y.C. Lin, M.S. Chen, H.B. Li, D.X. Wen, J.L. Zhang, M. He, Mater. Des. 77, 41 (2015)

    Article  Google Scholar 

  34. L.A. Reyes, P. Páramo, A.S. Zamarripa, M. de la Garza, M.P. Mata, Mater. Des. 83, 301 (2015)

    Google Scholar 

  35. Y.L. Xu, Q.H. Liu, F. Wang, J. Li, X.S. Xiao, X.L. Cao, Z. Shen, Mater. Des. 65, 840 (2015)

    Article  Google Scholar 

  36. D.G. He, Y.C. Lin, M.S. Chen, J. Chen, D.X. Wen, X.M. Chen, J. Alloys Compd. 649, 1075 (2015)

    Article  Google Scholar 

  37. X.G. You, Y. Tan, J.Y. Li, P.T. Li, C. Dong, S. Shi, J. Liao, S.Q. Qin, J. Alloys Compd. 638, 239 (2015)

    Article  Google Scholar 

  38. Y.C. Lin, J. Deng, Y.Q. Jiang, D.X. Wen, G. Liu, Mater. Sci. Eng., A 598, 251 (2014)

    Article  Google Scholar 

  39. N.Y. Ye, M. Cheng, S.H. Zhang, H.W. Song, H.W. Zhou, P.B. Wang, Int. J. Iron Steel Res. 22, 752 (2015)

    Article  Google Scholar 

  40. S. Antonov, M. Detrois, R.C. Helmink, S. Tin, J. Alloys Compd. 626, 76 (2015)

    Article  Google Scholar 

  41. Z.L. Zhao, Y.Q. Ning, H.Z. Guo, Z.K. Yao, M.W. Fu, Mater. Sci. Eng., A 620, 383 (2014)

    Article  Google Scholar 

  42. A.H. Cottrell, B.A. Bilby, Proc. Phys. Soc. A 62, 49 (1949)

    Article  ADS  Google Scholar 

  43. G.T. Hahn, Acta Meta. 10, 727 (1962)

    Article  Google Scholar 

  44. R. Srinivasan, Scr. Metall. Mater. 27, 925 (1992)

    Article  Google Scholar 

  45. G. Li, T.M. Maccagno, D.Q. Bai, J.J. Jonas, ISIJ Int. 36, 1479 (1996)

    Article  Google Scholar 

  46. Y.C. Lin, X.L. Fang, Y.P. Wang, J. Mater. Sci. 43, 5508 (2008)

    Article  ADS  Google Scholar 

  47. A.I. Fernández, B. López, J.M. Rodŕiguez–Ibabe, Scr. Mater. 40, 543 (1999)

    Article  Google Scholar 

  48. F. Pilehva, A. Zarei-Hanzaki, S.M. Fatemi-Varzaneh, A.R. Khalesian, J. Mater. Eng. Perform. 24, 1799 (2015)

    Article  Google Scholar 

  49. Y.C. Lin, M.S. Chen, J. Zhong, Mech. Res. Commun. 35, 142 (2008)

    Article  Google Scholar 

  50. M.S. Chen, Y.C. Lin, X.S. Ma, Mater. Sci. Eng., A 556, 260 (2012)

    Article  Google Scholar 

  51. Amir Etaati, Kamran Dehghani, Mater. Chem. Phys. 140, 208 (2013)

    Article  Google Scholar 

  52. C. Roucoules, P.D. Hodgson, S. Yue, J.J. Jonas, Metall. Mater. Trans. A 25, 389 (1994)

    Article  Google Scholar 

  53. Y.S. Na, J.T. Yeom, N.K. Park, J.Y. Lee, J. Mater. Process. Technol. 141, 337 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation Council of China (Grant No. 51375502), the Project of Innovation-driven Plan in Central South University (No. 2016CX008), the National Key Basic Research Program (Grant No. 2013CB035801), the Natural Science Foundation for Distinguished Young Scholars of Hunan Province (Grant No. 2016 JJ1017), Program of Chang Jiang Scholars of Ministry of Education (No. Q2015140), and Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle, College of Hunan Province (Grant No. 2016KF1603), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y.C., Chen, XM., Chen, MS. et al. A new method to predict the metadynamic recrystallization behavior in a typical nickel-based superalloy. Appl. Phys. A 122, 601 (2016). https://doi.org/10.1007/s00339-016-0129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0129-1

Keywords

Navigation