Skip to main content
Log in

Investigation of nonlinear optical properties on structures of silver micro-flowers

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this report, we investigated nonlinear optical properties of silver microstructures in flowers like shape (AgMFs). These structures have been fabricated on indium–tin–oxide substrate applying electrochemical deposition technique using three different time depositions of Ag (NH3)2OH to produce different sizes of Ag structures in micron scale size. The nonlinear optical property of the material was investigated by a Z-scan technique using femtosecond laser pulses at 800 nm. The AgMFs with higher Ag concentration show a greater enhancement in magnitude and sharpness of the plasmon resonance band. We found out that AgMFs exhibit highly enhanced surface plasmon resonance sensitivity than previous work reported using Ag nanoparticles (AgNPs) structures as comparison due to the arbitrarily structures of micro-like flowers. The Z-scan measurement using pulse laser showed that the nonlinear absorption of AgMFs is as high as 3.7 × 10−9 cm2 W−1 compared to AgNPs as ~2 × 108 cm2 W−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Bai et al., Silicon nanowire arrays coated with electroless Ag for increased surface-enhanced Raman scattering. APL Mater. 3(5), 056101 (2015)

    Article  ADS  Google Scholar 

  2. S. Mubeen et al., Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett. 12(4), 2088–2094 (2012)

    Article  ADS  Google Scholar 

  3. S. Bai et al., Large third-order nonlinear refractive index coefficient based on gold nanoparticle aggregate films. Appl. Phys. Lett. 107(14), 141111 (2015)

    Article  ADS  Google Scholar 

  4. K. Diest et al., Aluminum plasmonics: optimization of plasmonic properties using liquid-prism-coupled ellipsometry. Opt. Express 21(23), 28638–28650 (2013)

    Article  ADS  Google Scholar 

  5. I. Kriegel et al., Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J. Am. Chem. Soc. 134(3), 1583–1590 (2012)

    Article  Google Scholar 

  6. J.A. Scholl, A.L. Koh, J.A. Dionne, Quantum plasmon resonance of individual metallic nanoparticles. Nature 483, 421 (2012)

    Article  ADS  Google Scholar 

  7. K.S. Hamdan et al., Effects of silver nanoparticles towards the efficiency of organic solar cells. Appl. Phys. A 115(1), 63–68 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. D. Cotter et al., Nonlinear optics for high-speed digital information processing. Science 286(5444), 1523–1528 (1999)

    Article  Google Scholar 

  9. V. Amendola, O.M. Bakr, F. Stellacci, A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, Structure, and assembly. Plasmonics 5(1), 85–97 (2010)

    Article  Google Scholar 

  10. R. Zakaria et al., Surface plasmon resonance and photoluminescence studies of Au and Ag micro-flowers. Opt. Mater. Express 5(5), 943–950 (2015)

    Article  MathSciNet  Google Scholar 

  11. S. Ding et al., Optical percolation and nonlinearity of sputtered Ag island films. Opt. Express 14(4), 1541–1546 (2006)

    Article  ADS  Google Scholar 

  12. S.-L. Guo et al., Determination of optical nonlinearities in Cu (mpo) 2 by Z-scan technique. Opt. Quant. Electron. 35(7), 693–703 (2003)

    Article  Google Scholar 

  13. M. Sheik-bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam n2 measurements. Opt. Lett. 14(17), 955–957 (1989)

    Article  ADS  Google Scholar 

  14. C.R. Zamarreño et al., Experimental demonstration of lossy mode resonance generation for transverse-magnetic and transverse-electric polarizations. Opt. Lett. 38(14), 2481–2483 (2013)

    Article  ADS  Google Scholar 

  15. A.O. Dikovska et al., Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber. Sens. Actuators B Chem. 146(1), 331–336 (2010)

    Article  Google Scholar 

  16. R. del Coso, J. Solis, Relation between nonlinear refractive index and third-order susceptibility in absorbing media. JOSA B 21(3), 640–644 (2004)

    Article  ADS  Google Scholar 

  17. Y. Han et al., Fabrication of Ag and Cu nanowires by a solid-state ionic method and investigation of their third-order nonlinear optical properties. Mater. Lett. 62(17), 2806–2809 (2008)

    Article  Google Scholar 

  18. D.D. Smith et al., z-scan measurement of the nonlinear absorption of a thin gold film. J. Appl. Phys. 86(11), 6200–6205 (1999)

    Article  ADS  Google Scholar 

  19. D. Hall et al., Nonlinear optical susceptibilities of high-index glasses. Appl. Phys. Lett. 54(14), 1293–1295 (1989)

    Article  ADS  Google Scholar 

  20. R. Philip et al., Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters. Phys. Rev. B 62(19), 13160 (2000)

    Article  ADS  Google Scholar 

  21. V. Singh, P. Aghamkar, Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film. Appl. Phys. Lett. 104(11), 111112 (2014)

    Article  ADS  Google Scholar 

  22. M.M. Ara et al., Non-linear optical properties of silver nanoparticles prepared by hydrogen reduction method. Opt. Commun. 283(8), 1650–1653 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. Y. Hamanaka et al., Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites. J. Lumin. 87, 859–861 (2000)

    Article  Google Scholar 

  24. M.M. Ara, Z. Dehghani, S.S. Iranizad, Synthesis, characterization and single-beam Z-scan measurement of the third-order optical nonlinearities of ZnO nano-particles. Int. J. Mod. Phys. B 22(18n19), 3165–3171 (2008)

    Article  Google Scholar 

  25. G. Yang et al., The inherent optical nonlinearities of thin silver films. Opt. Mater. 25(4), 439–443 (2004)

    Article  ADS  Google Scholar 

  26. M. Ordal et al., Optical properties of the metals Al Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 22(7), 1099–1119 (1983)

    Article  ADS  Google Scholar 

  27. M.H. Mezher et al., Z-scan studies of the nonlinear optical properties of gold nanoparticles prepared by electron beam deposition. Appl. Opt. 54(33), 9703–9708 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported with the research Grant from University Malaya (RU001-2014), UM.C/625/1/HIR/MOHE/SCI/29 and PG012-2015B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zakaria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakaria, R., Mezher, M.H. & Chong, W.Y. Investigation of nonlinear optical properties on structures of silver micro-flowers. Appl. Phys. A 122, 664 (2016). https://doi.org/10.1007/s00339-016-0188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0188-3

Keywords

Navigation