Skip to main content
Log in

“Dry-state” surface-enhanced Raman scattering (SERS): toward non-destructive analysis of dyes on textile fibers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, we report the proof of concept of the possibility to identify natural dyes on textiles using surface-enhanced Raman scattering (SERS) detection by means of a simple “dry-state” SERS approach, i.e., exploiting the interactions between a solid nanometallic substrate and dye molecules present on textiles, thus avoiding any extraction or necessity to remove samples. The challenges associated with instrumental constraints related to SERS analysis of bulk materials and possible contamination of artworks with metallic nanoparticles were approached. Different silver nanosubstrates, i.e., nanoislands and films obtained starting from two different metal colloids, were tested for this aim. The study also investigates different parameters associated with the synthesis of nanosubstrates influencing the enhancement of the “dry-state” SERS signals obtained. SERS spectra of anthraquinone red dyes were successfully recorded from reference wool threads using this simple approach. The results illustrate the usefulness of the practical and rapid “dry-state” SERS approach that could open new opportunities toward the non-destructive analysis of dyes in artefacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26(2), 163 (1974)

    Article  ADS  Google Scholar 

  2. D.J. Jeanmaire, R.P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem. 84(1), 1 (1977)

    Article  Google Scholar 

  3. M.G. Albrecht, J.A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977)

    Article  Google Scholar 

  4. T. Vo-Dinh, TrAC Trends Anal. Chem. 17(8–9), 557 (1998)

    Article  Google Scholar 

  5. T. Vo-Dinh, M.Y.K. Hiromoto, G.M. Begun, R.L. Moody, Anal. Chem. 56(9), 1667 (1984)

    Article  Google Scholar 

  6. K. Chen, M. Leona, K.C. Vo-Dinh, F. Yan, M.B. Wabuyele, T. Vo-Dinh, J. Raman Spectrosc. 37(4), 520 (2006)

    Article  ADS  Google Scholar 

  7. K. Chen, K.C. Vo-Dinh, F. Yan, M.B. Wabuyele, T. Vo-Dinh, Anal. Chim. Acta 569(1–2), 234 (2006)

    Article  Google Scholar 

  8. M. Leona, J. Stenger, E. Ferloni, J. Raman Spectrosc. 37(10), 981 (2006)

    Article  ADS  Google Scholar 

  9. B. Doherty, B.G. Brunetti, A. Sgamellotti, C. Miliani, J. Raman Spectrosc. 42(11), 1932 (2011)

    Article  ADS  Google Scholar 

  10. M. Leona, P. Decuzzi, T.A. Kubic, G. Gates, J.R. Lombardi, Anal. Chem. 83(11), 3990 (2011)

    Article  Google Scholar 

  11. C. Lofrumento, M. Ricci, E. Platania, M. Becucci, E. Castellucci, J. Raman Spectrosc. 44(1), 47 (2013)

    Article  ADS  Google Scholar 

  12. E. Platania, J.R. Lombardi, M. Leona, N. Shibayama, C. Lofrumento, M. Ricci, M. Becucci, E. Castellucci, J. Raman Spectrosc. 45(11–12), 1133 (2014)

    Article  ADS  Google Scholar 

  13. A. Cesaratto, M. Leona, J.R. Lombardi, D. Comelli, A. Nevin, P. Londero, Angew. Chem. Int. Ed. 53(52), 14373 (2014)

    Article  Google Scholar 

  14. P.S. Londero, J.R. Lombardi, M. Leona, Anal. Chem. 85(11), 5463 (2013)

    Article  Google Scholar 

  15. D. Kurouski, S. Zaleski, F. Casadio, R.P. Van Duyne, N.C. Shah, J. Am. Chem. Soc. 136(24), 8677 (2014)

    Article  Google Scholar 

  16. D.L. Stokes, Z. Chi, T. Vo-Dinh, Appl. Spectrosc. 58(3), 292 (2004)

    Article  ADS  Google Scholar 

  17. A.V. Whitney, R.P. Van Duyne, F. Casadio, Proc. SPIE Int. Soc. Opt. Eng. 5993, 59930K-1 (2005)

    Google Scholar 

  18. A.V. Whitney, R.P. Van Duyne, F. Casadio, J. Raman Spectrosc. 37(10), 993 (2006)

    Article  ADS  Google Scholar 

  19. V.L. Schlegel, T.M. Cotton, Anal. Chem. 63(3), 241 (1991)

    Article  Google Scholar 

  20. I.M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, H.V. Demir, Opt. Express 15(22), 14289 (2007)

    Article  ADS  Google Scholar 

  21. S. Bruni, V. Guglielmi, F. Pozzi, J. Raman Spectrosc. 42(6), 1267 (2011)

    Article  ADS  Google Scholar 

  22. C. Zaffino, S. Bruni, V. Guglielmi, E. De Luca, J. Raman Spectrosc. 45(3), 211 (2014)

    Article  ADS  Google Scholar 

  23. R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter, M.J. Natan, Science 267(5204), 1629 (1995)

    Article  ADS  Google Scholar 

  24. G. Chumanov, K. Sokolov, B.W. Gregory, T.M. Cotton, J. Phys. Chem. 99(23), 9466 (1995)

    Article  Google Scholar 

  25. X.L. Li, W.Q. Xu, J.H. Zhang, H.Y. Jia, B. Yang, B. Zhao, B.F. Li, Y. Ozaki, Langmuir 20(4), 1298 (2004)

    Article  Google Scholar 

  26. W. Zhou, A. Hu, S. Bai, Y. Ma, Q. Su, Nanoscale Res. Lett. 9, 1–9 (2014)

    Article  ADS  Google Scholar 

  27. S. Bruni, E. De Luca, V. Guglielmi, F. Pozzi, Appl. Spectrosc. 65(9), 1017 (2011)

    Article  ADS  Google Scholar 

  28. P.C. Lee, D. Meisel, J. Phys. Chem. 86, 3391 (1982)

    Article  Google Scholar 

  29. N. Leopold, B. Lendl, J. Phys. Chem. B 107(24), 5723 (2003)

    Article  Google Scholar 

  30. Yu. Wan, Zhirui Guo, Xiaoli Jiang, Kun Fang, Lu Xiang, Yu. Zhang, Gu Ning, J. Colloid Interface Sci. 394, 263 (2013)

    Article  Google Scholar 

  31. G.J. Kovacs, R.O. Loutfy, P.S. Vincett, C. Jennings, R. Aroca, Langmuir 2(6), 689 (1986)

    Article  Google Scholar 

  32. A. Idone, M. Gulmini, A.I. Henry, F. Casadio, L.R. Chang, L. Appolonia, R.P. Van Duyne, N.C. Shah, Analyst 138(20), 5895 (2013)

    Article  ADS  Google Scholar 

  33. M.V. Canamares, J.V. Garcia-Ramos, J.D. Gomez-Varga, C. Domingo, S. Sanchez-Cortes, Langmuir 21(18), 8546 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

Prof. F. Cappitelli, Dr. D.S. Zerla, Dr. D. Maggioni and Dr. M. Gambino are sincerely thanked for having provided their centrifuges for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Vo-Dinh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaffino, C., Ngo, H.T., Register, J. et al. “Dry-state” surface-enhanced Raman scattering (SERS): toward non-destructive analysis of dyes on textile fibers. Appl. Phys. A 122, 707 (2016). https://doi.org/10.1007/s00339-016-0209-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0209-2

Keywords

Navigation