Skip to main content
Log in

A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Soft magnetic materials have been used in many applications, i.e., electrical and electronic industries, due to their desirable electromagnetic characteristics. The performance of these materials in bulk form, where the size of grains is in micrometer scale, is only limited to a few megahertz frequencies due to their higher conductivity and domain wall resonance. Synthesizing the ferrite particles in nanometer scales before compacting them for sintering would be one way to solve using these materials at higher frequencies. The properties of ferrite depend mainly on the technique and conditions of preparation, which, in turn, affect the cation distribution over the tetrahedral and octahedral sites. Thus, the aim of this study was to introduce some methods used for synthesizing nanocrystalline soft magnetic ferrites. Furthermore, the microstructure features, i.e., grain sizes and porosities, which are influenced by the types of method used for preparation, playing key role on the magnetic properties of the sample, are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Tao, F. Gao, X. Liu, O. Toft, Preparation and gas-sensing properties of CuFe2O4 at reduced temperature. Mater. Sci. Eng. B 77(2), 172–176 (2000)

    Article  Google Scholar 

  2. R.D.K. Misra, S. Gubbala, A. Kale, W.F. Egelhoff Jr., A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique. Mater. Sci. Eng. B 111, 164–174 (2004)

    Article  Google Scholar 

  3. Z. Yue, L. Li, J. Zhou, H. Zhang, Z. Gui, Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate-citrate gels. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 64(1), 68–72 (1999)

    Article  Google Scholar 

  4. P. Ravindranathan, K.C. Patil, Novel solid solution precursor method for the preparation of ultrafine Ni–Zn ferrites. J. Mater. Sci. 22(9), 3261–3264 (1987)

    Article  ADS  Google Scholar 

  5. S. Bid, S.K. Pradhan, Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld’s analysis. Mater. Chem. Phys. 82(1), 27–37 (2003)

    Article  Google Scholar 

  6. A. Verma, O.P. Thakur, C. Prakash, T.C. Goel, R.G. Mendiratta, Temperature dependence of electrical properties of nickel–zinc ferrites processed by the citrate precursor technique. Mater. Sci. Eng. B 116(1), 1–6 (2005)

    Article  Google Scholar 

  7. R.C. Kambale, P.A. Shaikh, S.S. Kamble, Y.D. Koleka, Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J. Alloys Compd. 478(1), 599–603 (2009)

    Article  Google Scholar 

  8. V. Šepelák, I. Bergmann, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, S.J. Campbell, K.D. Becker, J. Phys. Chem. C 111, 5026–5033 (2007)

    Article  Google Scholar 

  9. S.M. Patange, S.E. Shirsath, B.G. Toksha, S.S. Jadhav, K.M. Jadhav, J. Appl. Phys. 106, 023914 (2009)

    Article  ADS  Google Scholar 

  10. J. Ding, X.Y. Liu, J. Wang, Y. Shi, Ultrafine ferrite particles prepared by coprecipitation/mechanical milling. Mater. Lett. 44(1), 19–22 (2000)

    Article  Google Scholar 

  11. A. Verma, R. Chatterjee, Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn–Zn and Ni–Zn ferrites synthesized by the citrate precursor technique. J. Magn. Magn. Mater. 306(2), 313–320 (2006)

    Article  ADS  Google Scholar 

  12. M. George, A.M. John, S.S. Nair, P.A. Joy, M.R. Anantharaman, Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302(1), 190–195 (2006)

    Article  ADS  Google Scholar 

  13. P. Gao, X. Hua, V. Degirmenci, D. Rooney, M. Khraisheh, R. Pollard, R.M. Bowman, E.V. Rebrov, Structural and magnetic properties of Ni1−x Zn x Fe2O4 (x = 0, 0.5 and 1) nanopowders prepared by sol–gel method. J. Magn. Magn. Mater. 348, 44–50 (2013)

    Article  ADS  Google Scholar 

  14. A.A. Hossain, S.T. Mahmud, M. Seki, T. Kawai, H. Tabata, Structural, electrical transport, and magnetic properties of Ni1−x Zn x Fe2O4. J. Magn. Magn. Mater. 312(1), 210–219 (2007)

    Article  ADS  Google Scholar 

  15. A. Rafferty, T. Prescott, D. Brabazon, Sintering behaviour of cobalt ferrite ceramic. Ceram. Int. 34(1), 15–21 (2008)

    Article  Google Scholar 

  16. S.U.N. Ke, I.A.N. Zhongwen, C.H.E.N. Shengming, S.U.N. Yueming, Y.U. Zhong, Effect of sintering process on microstructure and magnetic properties of high frequency power ferrite. Rare Met. 25(6), 509–514 (2006)

    Article  Google Scholar 

  17. S.V.N.T. Kuchibhatla, A.S. Karakoti, D. Bera, S. Seal, One dimensional nanostructured materials. Prog. Mater. Sci. 52(5), 699–913 (2007)

    Article  Google Scholar 

  18. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46(1–2), 1–184 (2001)

    Article  Google Scholar 

  19. R.H. Kodama, A.E. Berkowitz, E.J. McNiff Jr., S. Foner, Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77(2), 394–397 (1996)

    Article  ADS  Google Scholar 

  20. V. Šepelák, S. Indris, P. Heitjans, K.D. Becker, Direct determination of the cation disorder in nanoscale spinels by NMR, XPS, and Mössbauer spectroscopy. J. Alloys Compd. 434–435, 776–778 (2007)

    Article  Google Scholar 

  21. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi, I. Nakatani, Mixed spinel structure in nanocrystalline NiFe2O4. Phys. Rev. B 63, 184108 (2007)

    Article  ADS  Google Scholar 

  22. J. Wang, F. Ren, R. Yi, A. Yan, G. Qiu, X. Liu, Solvothermal synthesis and magnetic properties of size-controlled nickel ferrite nanoparticles. J. Alloys Compd. 479(1–2), 791–796 (2009)

    Article  Google Scholar 

  23. A.G. Roca, J.F. Marco, M.D.P. Morales, C.J. Serna, Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles. J. Phys. Chem. C 111(50), 18577–18584 (2007)

    Article  Google Scholar 

  24. T. Nakamura, Low-temperature sintering of Ni–Zn–Cu ferrite and its permeability spectra. J. Magn. Magn. Mater. 168(3), 285–291 (1997)

    Article  ADS  Google Scholar 

  25. I. Arief, P.K. Mukhopadhyay, Preparation of spherical and cubic Fe 55 Co 45 microstructures for studying the role of particle morphology in magnetorheological suspensions. J. Magn. Magn. Mater. 360, 104–108 (2014)

    Article  ADS  Google Scholar 

  26. A. Gómez-Ramírez, M.T. López-López, J.D.G. Durán, F. González-Caballero, Influence of particle shape on the magnetic and magnetorheological properties of nanoparticle suspensions. Soft Matter 5, 3888 (2009)

    Article  ADS  Google Scholar 

  27. J. de Vicente, J.P. Segovia-Gutiérrez, E. Andablo-Reyes, F. Vereda, R. Hidalgo-Álvarez, Dynamic rheology of sphere- and rod-based magnetorheological fluids. J. Chem. Phys. 131, 194902 (2009)

    Article  ADS  Google Scholar 

  28. S. Zahi, M. Hashim, A.R. Daud, Synthesis, magnetic properties and microstructure of Ni–Zn ferrite by sol–gel technique. J. Magn. Magn. Mater. 308(2), 177–182 (2007)

    Article  ADS  Google Scholar 

  29. M. Stefanescu, M. Stoia, C. Caizer, O. Stefanescu, Preparation of x(Ni0.65Zn0.35Fe2O4)/(100−x)SiO2 nanocomposite powders by a modified sol–gel method. Mater. Chem. Phys. 113(1), 342–348 (2009)

    Article  Google Scholar 

  30. M. Atif, M. Nadeem, R. Grössinger, R.S. Turtelli, Studies on the magnetic, magnetostrictive and electrical properties of sol–gel synthesized Zn doped nickel ferrite. J. Alloys Compd. 509(18), 5720–5724 (2011)

    Article  Google Scholar 

  31. L.S. Cividanes, T.M.B. Campos, L.A. Rodrigues, D.D. Brunelli, G.P. Thim, Review of mullite synthesis routes by sol–gel method. J. Sol–Gel Sci. Technol. 55(1), 111–125 (2010)

    Article  Google Scholar 

  32. M. Srivastava, S. Chaubey, A.K. Ojha, Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol–gel and hydrothermal methods. Mater. Chem. Phys. 118(1), 174–180 (2009)

    Article  Google Scholar 

  33. M.R. Anantharaman, M.J. Asha, G. Mathew, N.S. Swapna, P.A. Joy, Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302, 190–195 (2006)

    Article  ADS  Google Scholar 

  34. C.F. Zhang, X.C. Zhong, H.Y. Yu, Z.W. Liu, D.C. Zeng, Effects of cobalt doping on the microstructure and magnetic properties of Mn–Zn ferrites prepared by the co-precipitation method. Phys. B Condens. Matter 404(16), 2327–2331 (2009)

    Article  ADS  Google Scholar 

  35. D. Makovec, A. Kodre, I. Arčon, M. Drofenik, Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions. J. Nanopart. Res. 11(5), 1145–1158 (2008)

    Article  Google Scholar 

  36. T. Jahanbin, M. Hashim, K. Amin Mantori, Comparative studies on the structure and electromagnetic properties of Ni–Zn ferrites prepared via co-precipitation and conventional ceramic processing routes. J. Magn. Magn. Mater. 322(18), 2684–2689 (2010)

    Article  ADS  Google Scholar 

  37. I. Sharifi, H. Shokrollahi, M.M. Doroodmand, R. Safi, Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods. J. Magn. Magn. Mater. 324(10), 1854–1861 (2012)

    Article  ADS  Google Scholar 

  38. C.G. Reddy, S.V. Manorama, V.J. Rao, Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sens. Actuator B Chem. 55, 90–95 (1999)

    Article  Google Scholar 

  39. R. Qin, F. Li, W. Jiang, L. Liu, Salt-assisted low temperature solid state synthesis of high surface area CoFe2O4 nanoparticles. J. Mater. Sci. Technol. 25, 69 (2009)

    Article  Google Scholar 

  40. S. Chandarak, T. Sareein, A. Ngamjarurojana, S. Maensiri, P. Laoratanakul, S. Ananta, R. Yimnirun, Effect of calcination conditions on phase formation and characterization of BiFeO3–BaTiO3 powders synthesized by a solid-state reaction. Adv. Mater. Res. 55–57, 241–244 (2008)

    Article  Google Scholar 

  41. C. Silawongsawat, S. Chandarak, T. Sareein, A. Ngamjarurojana, S. Maensiri, P. Laoratanakul, S. Ananta, R. Yimnirun, Effect of calcination conditions on phase formation and characterization of BiFeO3 powders synthesized by a solid-state reaction. Adv. Mater. Res. 55–57, 237–240 (2008)

    Article  Google Scholar 

  42. S. Zahi, A.R. Daud, M. Hashim, A comparative study of nickel–zinc ferrites by sol–gel route and solid-state reaction. Mater. Chem. Phys. 106(2), 452–456 (2007)

    Article  Google Scholar 

  43. U. Ghazanfar, S.A. Siddiqi, G. Abbas, Structural analysis of the Mn–Zn ferrites using XRD technique. J. Mater. Sci. Eng. B 118(1), 84–86 (2005)

    Article  Google Scholar 

  44. M.H. Abdullah, S.H. Ahmed, Sains-Malaysiana 22, 1 (1993)

    Google Scholar 

  45. M.A. Ahmed, N. Okasha, S.I. El-Dek, Preparation and characterization of nanometric Mn ferrite via different methods. Nanotechnology 19(6), 065603 (2008)

    Article  ADS  Google Scholar 

  46. X. Jiang, M.A. Trunov, M. Schoenitz, R.N. Dave, E.L. Dreizin, Mechanical alloying and reactive milling in a high energy planetary mill. J. Alloys Compd. 478(1–2), 246–251 (2009)

    Article  Google Scholar 

  47. M. Jalaly, M.H. Enayati, F. Karimzadeh, P. Kameli, Mechanosynthesis of nanostructured magnetic Ni–Zn ferrite. Powder Technol. 193(2), 150–153 (2009)

    Article  Google Scholar 

  48. A. Hajalilou, M. Hashim, H. Mohamed Kamari, Structure and magnetic properties of Ni0.64Zn0.36Fe2O4 nanoparticles synthesized by high-energy milling and subsequent heat treatment. J. Mater. Sci. Mater. Electron. 26(3), 1709–1718 (2014)

    Article  Google Scholar 

  49. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, H. Mohamed Kamari, N. Sarami, Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process. Ceram. Int. 40, 5881–5887 (2014)

    Article  Google Scholar 

  50. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, H. M. Kamari, Thermal evolution of the Ni-ferrite nanoparticles obtained by mechanical alloying as probed by differential scanning calorimetry. J. Therm. Anal. Calorim. 119(2), 995–1000 (2015)

    Article  Google Scholar 

  51. I. Ismail, M. Hashim, K. Amin Matori, R. Alias, J. Hassan, Milling time and BPR dependence on permeability and losses of Ni0.5Zn0.5Fe2O4 synthesized via mechanical alloying process. J. Magn. Magn. Mater. 323(11), 1470–1476 (2011)

    Article  ADS  Google Scholar 

  52. V. Šepelák, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F.J. Litterst, K.D. Becker, Evolution of structure and magnetic properties with annealing temperature in nanoscale high-energy-milled nickel ferrite. J. Magn. Magn. Mater. 257(2–3), 377–386 (2003)

    Article  ADS  Google Scholar 

  53. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, H. Mohamed Kamari, Influence of evolving microstructure on electrical and magnetic characteristics in mechanically synthesized polycrystalline Ni-ferrite nanoparticles. J. Alloys Compd. 633, 306–316 (2015)

    Article  Google Scholar 

  54. I. Chicinas, Soft magnetic nanocrystalline powders produced by mechanical alloying routes. J. Optoelectron. Adv. Mater. 8(2), 439–448 (2006)

    Google Scholar 

  55. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, R.J. Joseyphus, B. Jeyadevan, K. Tohji, K. Chattopadhyay, Grain size effect on the Néel temperature and magnetic properties of nanocrystalline NiFe2O4 spinel. J. Magn. Magn. Mater. 238(2–3), 281–287 (2002)

    Article  ADS  Google Scholar 

  56. S.A. Oliver, V.G. Harris, H.H. Hamdeh, J.C. Ho, Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders. Appl. Phys. Lett. 76(19), 2761 (2000)

    Article  ADS  Google Scholar 

  57. A. Hajalilou, M. Hashim, N. Sarami, Influence of CaO and SiO2 co-doping on the magnetic, electrical properties and microstructure of a Ni–Zn ferrite. J. Phys. D Appl. Phys. 48(14), 145001 (2015)

    Article  ADS  Google Scholar 

  58. V. Šepelák, S. Wißmann, K.D. Becker, A temperature-dependent Mössbauer study of mechanically activated and non-activated zinc ferrite. J. Mater. Sci. 33(11), 2845–2850 (1998)

    Article  ADS  Google Scholar 

  59. A. Verma, T.C. Goel, R.G. Mendiratta, P. Kishan, Magnetic properties of nickel–zinc ferrites prepared by the citrate precursor method. J. Magn. Magn. Mater. 208(1–2), 13–19 (2000)

    Article  ADS  Google Scholar 

  60. M. Kakihana, Invited review “sol–gel” preparation of high temperature superconducting oxides. J. Sol–Gel Sci. Technol. 6(1), 7–55 (1996)

    Article  Google Scholar 

  61. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (IEEE Press & Wiley, New Jersey, 2009)

    Google Scholar 

  62. A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, Pittsburgh, 2006)

    Google Scholar 

  63. R. Louh, T.G. Reynolds, R.C. Buchanan, Ferrite ceramics. Mater.-N. Y. 25, 323–376 (2004)

    Google Scholar 

  64. T. Miyazaki, H. Jin, The Physics of Ferromagnetism, vol. 158 (Springer, Berlin, 2012)

    Book  MATH  Google Scholar 

  65. A. Goldman, Handbook of Modern Ferromagnetic Materials (Springer, Berlin, 1999)

    Book  Google Scholar 

  66. W. Kingery, H. Bowen, D. Uhlmann, Introduction to ceramics (John Wiley & Sons, New York, 1976)

    Google Scholar 

  67. L. Neel, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137–198 (1948)

    Google Scholar 

  68. J.S. Kim, W.H. Chang, The effect of calcining temperature on the magnetic properties of the ultra-fine NiCuZn-ferrites. Mater. Res. Bull. 44, 633–637 (2009)

    Article  Google Scholar 

  69. D.C. Jiles, D.L. Atherton, Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater. 61, 48–60 (1986)

    Article  ADS  Google Scholar 

  70. O.M. Lemine, M. Bououdina, M. Sajieddine, A.M. Al-Saie, M. Shafi, A. Khatab, M. Alhilali, M. Henini, Synthesis, structural, magnetic and optical properties of nanocrystalline ZnFe2O4. Physica B 406, 1989–1994 (2011)

    Article  ADS  Google Scholar 

  71. A. Azizi, S.K. Sadrnezhaad, A. Hasani, Morphology and magnetic properties of FeCo nanocrystalline powder produced by modified mechanochemical procedure. J. Magn. Magn. Mater. 322, 3551–3554 (2010)

    Article  ADS  Google Scholar 

  72. J. Azadmanjiri, S.A. Seyyed Ebrahimi, H.K. Salehani, Magnetic properties of nanosize NiFe2O4 particles synthesized by sol–gel auto combustion method. Ceram. Int. 33, 1623–1625 (2007)

    Article  Google Scholar 

  73. C.P. Bean, Hysteresis loops of mixtures of ferromagnetic micropowders. J. Appl. Phys. 26, 1381–1383 (1955)

    Article  ADS  Google Scholar 

  74. R.C. Pohanka, P.L. Smith, S.W. Freiman, L.M. Levinson, Electronic Ceramics, Properties, Devices and Applications. Recent Advances in Piezoelectric Ceramics, Electronic Ceramics (Marcel Dekker, New York, 1988)

    Google Scholar 

  75. A. Globus, H. Pascard, V. Cagna, Distance between magnetic ions and fundamental properties in ferrites. Le J. Phys. Colloq. 38(C1), C1-163–C1-168 (1977)

    Google Scholar 

  76. A. Goldman, Modern Ferrite Technology (Van Nostrand Reinhold, New York, 1990)

    Google Scholar 

  77. C. Guillaud, The properties of manganese-zinc ferrites and the physical processes governing them. Proc. IEE-Part B Radio Electron. Eng. 104(5S), 165–173 (1957)

    Article  Google Scholar 

  78. T. Pannaparayil, R. Marande, S. Komarneni, Magnetic properties of high-density Mn–Zn ferrites. J. Appl. Phys. 69(8), 5349 (1991)

    Article  ADS  Google Scholar 

  79. S.B. Waje, M. Hashim, W.D.W. Yusoff, Z. Abbas, Sintering temperature dependence of room temperature magnetic and dielectric properties of Co0.5Zn0.5Fe2O4 prepared using mechanically alloyed nanoparticles. J. Magn. Magn. Mater. 322(6), 686–691 (2010)

    Article  ADS  Google Scholar 

  80. J. Pankert, Influence of grain boundaries on complex permeability in MnZn ferrites. J. Magn. Magn. Mater. 138(1–2), 45–51 (1994)

    Article  ADS  Google Scholar 

  81. P.J. van der Zaag, J.J.M. Ruigrok, A. Noordermeer, M.H.W.M. van Delden, P.T. Por, M.T. Rekveldt, D.M. Donnet, J.N. Chapman, The initial permeability of polycrystalline MnZn ferrites: the influence of domain and microstructure. J. Appl. Phys. 74(6), 4085 (1993)

    Article  ADS  Google Scholar 

  82. M.T. Johnson, E.G. Visser, A coherent model for the complex permeability in polycrystalline ferrites. IEEE Trans. Magn. 26(5), 1987–1989 (1990)

    Article  ADS  Google Scholar 

  83. A. Žnidaršič, M. Drofenik, High-resistivity grain boundaries in CaO-doped MnZn ferrites for high-frequency power application. J. Am. Ceram. Soc. 82(2), 359–365 (1999)

    Google Scholar 

  84. H. Shokrollahi, K. Janghorban, Influence of additives on the magnetic properties, microstructure and densification of Mn–Zn soft ferrites. Mater. Sci. Eng. B 141(3), 91–107 (2007)

    Article  Google Scholar 

  85. K. Kawano, M. Hachiya, Y. Iijima, N. Sato, Y. Mizuno, The grain size effect on the magnetic properties in NiZn ferrite and the quality factor of the inductor. J. Magn. Magn. Mater. 321(16), 2488–2493 (2009)

    Article  ADS  Google Scholar 

  86. J. Bera, P.K. Roy, Effect of grain size on electromagnetic properties of Ni0.7Zn0.3Fe2O4 ferrite. Phys. B Condens. Matter 363(1–4), 128–132 (2005)

    Article  ADS  Google Scholar 

  87. M. Le Floc’h, A.M. Konn, Some of the magnetic properties of polycrystalline soft ferrites: origins and developments of a model for the description of the quasistatic magnetization. Le J. Phys. IV 07(C1), C1-187–C1-190 (1997)

    Google Scholar 

  88. A.T. Raghavender, K. Zadro, D. Pajic, Z. Skoko, N. Biliškov, Effect of grain size on the Néel temperature of nanocrystalline nickel ferrite. Mater. Lett. 64(10), 1144–1146 (2010)

    Article  Google Scholar 

  89. G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. Magn. IEEE Trans. 26(5), 1397–1402 (1990)

    Article  ADS  Google Scholar 

  90. P.J. van der Zaag, New views on the dissipation in soft magnetic ferrites. J. Magn. Magn. Mater. 196–197, 315–319 (1999)

    Article  Google Scholar 

  91. H. Rikukawa, Relationship between microstructures and magnetic properties of ferrites containing closed pores. Magn. IEEE Trans. 18(6), 1535–1537 (1982)

    Article  ADS  Google Scholar 

  92. F.N. Bradley, Materials for Magnetic Functions, chap. 2 (Hayden, New York, 1976)

  93. N.D. Chaudhari, R.C. Kambale, D.N. Bhosale, S.S. Suryavanshi, S.R. Sawant, Thermal hysteresis and domain states in Ni–Zn ferrites synthesized by oxalate precursor method. J. Magn. Magn. Mater. 322(14), 1999–2005 (2010)

    Article  ADS  Google Scholar 

  94. D.N. Bhosale, V.M.S. Verenkar, K.S. Rane, P.P. Bakare, S.R. Sawant, Initial susceptibility studies on Cu–Mg–Zn ferrites. Mater. Chem. Phys. 59(1), 57–62 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate MOHE and UTM, with Grant PRGS (Vote. No. 4L667), for providing financial support for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Hajalilou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajalilou, A., Mazlan, S.A. A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties. Appl. Phys. A 122, 680 (2016). https://doi.org/10.1007/s00339-016-0217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0217-2

Keywords

Navigation