Skip to main content
Log in

Bandgap-tailored NiO nanospheres: an efficient photocatalyst for the degradation of crystal violet dye solution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bandgap-tailored NiO nanospheres were successfully synthesized by facile precipitation method for the first time and characterized by XRD, EDX, SEM, TEM, FTIR, UV and PL. Interestingly, the modification of the band gap was observed using UV–Vis (DRS) spectroscopy, and the observed band gap is 3.31 eV. The morphology of the materials was analysed by SEM and TEM which show the sphere like structures of NiO with the particle size of ~20 nm. The efficiency of the materials was examined by the degradation of crystal violet dye under UV light illumination. The complete degradation was achieved within 60 min, and the mechanism of the degradation were also been proposed. In addition, the degradation of rhodamine B (RhB) and methylene blue dye solution was also carried out to extend the practical applications of NiO nanospheres. The involvement of reactive oxidative species (ROS) was found out by trapping experiment, and the ROS is superoxide radical anion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.J. Fan, C.S. Lu, W.L.W. Lee, M.R. Chiou, C.C. Chen, J. Hazard. Mater. 185, 227 (2011)

    Article  Google Scholar 

  2. R. Ahmad, J. Hazard. Mater. 171, 767 (2009)

    Article  Google Scholar 

  3. P.S. Kumar, M. Selvakumar, P. Bhagabati, B. Bharathi, S. Karuthapandian, S. Balakumar, RSC Adv. 4, 32977 (2014)

    Article  Google Scholar 

  4. S.G. Babu, R. Vinoth, P.S. Narayana, D. Bahnemann, B. Neppolian, APL Mater. 3, 104415 (2015)

    Article  ADS  Google Scholar 

  5. A. Nezamzadeh-Ejhieh, Z. Banan, Desalination 284, 157 (2012)

    Article  Google Scholar 

  6. C.C. Chen, H.J. Fan, C.Y. Jang, J.L. Jan, H.D. Lin, C.S. Lu, J. Photochem. Photobiol. A 184, 147 (2006)

    Article  Google Scholar 

  7. K.P. Singh, S. Gupta, A.K. Singh, S. Sinh, J. Hazard. Mater. 186, 1462 (2011)

    Article  Google Scholar 

  8. Y. Jua, J. Fang, X. Liu, Z. Xu, X. Ren, C. Sun, S. Yang, Q. Ren, Y. Ding, K. Yu, L. Wang, Z. Wei, J. Hazard. Mater. 185, 1489 (2011)

    Article  Google Scholar 

  9. C. Domingo, T.D.L. Arcos, A. Ainestschian, M.M. Sanz, I. Tanarro, Vib. Spectrosc. 30, 157 (2002)

    Article  Google Scholar 

  10. C. Guillard, D. Baldassare, C. Duchamp, M.N. Ghazzal, S. Daniele, Catal. Today 122, 160 (2007)

    Article  Google Scholar 

  11. K. Ito, T. Tomino, M. Ohshima, H. Kurakawa, K. Sugiyama, H. Miura, Appl. Catal. A 249, 19 (2003)

    Article  Google Scholar 

  12. L.R. Bentley, T.G. Chasteen, Chemosphere 55, 291 (2004)

    Article  Google Scholar 

  13. J.M.M. Zwart, J.G. Keunen, C1-cycle of sulfur compounds. Biodegradation 3, 37 (1992)

    Article  Google Scholar 

  14. W. Au, S. Pathak, C.I. Collie, T.S. Hsu, Mutat. Res. 58, 269 (1978)

    Article  Google Scholar 

  15. A.Y. Zahrim, N. Hilal, Water Resour. Ind. 3, 23 (2013)

    Article  Google Scholar 

  16. N. Ghaemi, S.S. Madaeni, P. Daraei, H. Rajabi, T. Hojaeimehr, F. Rahimpour, B. Shirvani, J. Hazard. Mater. 298, 111 (2015)

    Article  Google Scholar 

  17. A. Bhatnagar, W. Hogland, M. Marques, M. Sillanpaa, Chem. Eng. J. 219, 499 (2013)

    Article  Google Scholar 

  18. V.K. Gupta, I.A.T.A. Saleh, A. Nayak, S. Agarwal, RSC Adv. 2, 6380 (2012)

    Article  Google Scholar 

  19. S.G. Babu, R. Vinoth, D.P. Kumar, M.V. Shankar, H.L. Chou, K. Vinodgopal, B. Neppolian, Nanoscale 7, 7849 (2015)

    Article  ADS  Google Scholar 

  20. K. Saravanakumar, M.M. Ramjan, P. Suresh, V. Muthuraj, J. Alloys Compd. 664, 149 (2016)

    Article  Google Scholar 

  21. Y. Ju-Na, J.R. Lead, Sci. Total Environ. 400, 396 (2008)

    Article  Google Scholar 

  22. D.H. Yang, C.S. Park, J.H. Min, M.H. Oh, Y.S. Yoon, S.W. Lee, J.S. Shin, Curr. Appl. Phys. 9, 132 (2009)

    Article  ADS  Google Scholar 

  23. F. Augusto, E. Carasek, R. Gomes Costa Silva, S.R. Rivellino, A.D. Batista, E.A. Martendal, J. Chromatogr. A 1217, 2533 (2010)

    Article  Google Scholar 

  24. A. Molla, M. Sahu, S. Hussain, J. Mater. Chem. A 3, 15616 (2015)

    Article  Google Scholar 

  25. A. Molla, M. Sahu, S. Hussain, Sci. Rep. 6, 26034 (2016)

    Article  ADS  Google Scholar 

  26. B. Bharathi, S. Thanikaikarasan, P. Kollu, P.V. Chandrasekar, K. Sankaranarayanan, X. Sahaya Shajan, J. Mater. Sci. 12, 5338 (2014)

    Google Scholar 

  27. S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, H.W. Shem, E. Esuh, Chem. Phys. Lett. 363, 134 (2002)

    Article  ADS  Google Scholar 

  28. H. He, S. Yang, K. Yu, Y. Ju, C. Sun, L. Wang, J. Hazard. Mater. 173, 393 (2010)

    Article  Google Scholar 

  29. P.S. Kumar, M. Selvakumar, S.G. Babu, S. Karuthapandian, S. Chattopadhyay, Mater. Lett. 151, 45 (2015)

    Article  Google Scholar 

  30. C. Karunakaran, S. Senthilvelan, S. Karuthapandian, Sol. Energy Mater. Sol. Cells 89, 391 (2005)

    Article  Google Scholar 

  31. P.S. Kumar, M. Selvakumar, S.G. Babu, S.K. Jaganathan, S. Karuthapandian, S. Chattopadhyay, RSC Adv. 5, 57493 (2015)

    Article  Google Scholar 

  32. S.G. Babu, R. Vinoth, B. Neppolian, D.D. Dionysiou, M. Ashokkumar, J. Hazard. Mater. 291, 83 (2015)

    Article  Google Scholar 

  33. P.S. Kumar, S. Karuthapandian, M. Umadevi, A. Elangovan, V. Muthuraj, Mater. Focus 5, 128 (2016)

    Article  Google Scholar 

  34. P. Latha, R. Dhanabackialakshmi, P.S. Kumar, S. Karuthapandian, Sep. Purif. Technol. 168, 124 (2016)

    Article  Google Scholar 

  35. P. Karthik, R. Vinoth, S.G. Babu, M. Wen, T. Kamegawa, H. Yamashita, B. Neppolian, RSC Adv. 5, 39752 (2015)

    Article  Google Scholar 

  36. C. Karunakaran, S. Karuthapandian, Sol. Energy Mater. Sol. Cells 90, 1723 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to thank the University Grant Commission, New Delhi, India, for the benefit of Faculty Development Programme (FDP—TNMK033/003). We also express our gratitude to the College Managing Board, Principal and Head of the Department of Chemistry, VHNSN College, Virudhunagar, for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swaminathan Karuthapandian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahini, R., Kumar, P.S. & Karuthapandian, S. Bandgap-tailored NiO nanospheres: an efficient photocatalyst for the degradation of crystal violet dye solution. Appl. Phys. A 122, 744 (2016). https://doi.org/10.1007/s00339-016-0277-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0277-3

Keywords

Navigation