Skip to main content
Log in

Grain boundary defect compensation in Ti-doped BaFe0.5Nb0.5O3 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Giant dielectric ceramics Ba(Nb0.5Fe0.5-x Ti x )O3 (BNFT) have been fabricated by a conventional solid-state reaction. According to X-ray diffraction analysis, the crystal structure of these ceramics can be described by the cubic centrosymmetric with Pm-3m space group. The real part (ε’) of dielectric permittivity and dielectric loss (tanδ) of the BNFT ceramics was measured in a frequency range from 40 Hz to 100 MHz at room temperature. The (ε’) of all these samples displays a high value (~6500) and a small frequency-dependence from 1 kHz to 1 MHz. We have established a link between conductivity activation energy and defect compensation at grain boundaries. The Ti4+-doped Ba(Nb0.5Fe0.5)O3 as a donor makes a great influence on the grain boundary behavior, which restricts the migration of oxygen vacancy and depresses dielectric loss factor for Ba(Nb0.5Fe0.5)O3 ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

    Article  ADS  Google Scholar 

  2. S.Y. Chung, I.D. Kim, S.J. Kang, Nat. Mater. 3, 774 (2004)

    Article  ADS  Google Scholar 

  3. S. Saha, T.P. Sinha, J. Phys.: Condens. Matter 14, 249 (2002)

    ADS  Google Scholar 

  4. Z. Wang, X.M. Chen, L. Ni, X.Q. Liu, Appl. Phys. Lett. 90, 022904 (2007)

    Article  ADS  Google Scholar 

  5. F. Zhao, Z. Yue, J. Pei, D. Yang, Z. Gui, L. Li, Appl. Phys. Lett. 91, 052903 (2007)

    Article  ADS  Google Scholar 

  6. S. Saha, T.P. Sinha, Phys. Rev. B 65, 134103 (2002)

    Article  ADS  Google Scholar 

  7. P.K. Patel, K.L. Yadav, H. Singh, A.K. Yadav, J. Alloys Compd. 591, 224 (2014)

    Article  ADS  Google Scholar 

  8. I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, J. Appl. Phys. 93, 4130 (2003)

    Article  ADS  Google Scholar 

  9. Y.M. Huang, D.P. Shi, L.J. Liu, G.Z. Li, S.Y. Zheng, L. Fang, Appl. Phys. A 114, 891 (2014)

    Article  ADS  Google Scholar 

  10. G.D. Dwivedi, A.G. Joshi, H. Kevin, P. Shahi, A. Kumar, A.K. Ghosh, H.D. Yang, S. Chatterjee, Solid State Commun. 152, 360 (2012)

    Article  ADS  Google Scholar 

  11. M. Gangulya, S. Paridaa, E. Sinhaa, S.K. Routa, A.K. Simanshub, A. Hussainc, I.W. Kimc, Mater. Chem. Phys. 131, 535 (2011)

    Article  Google Scholar 

  12. L.J. Liu, H.Q. Fan, L. Wang, X.L. Chen, P.Y. Fang, Philos. Mag. 88, 537 (2008)

    Article  ADS  Google Scholar 

  13. M. Pastor, J. Alloys Compd. 463, 323 (2008)

    Article  Google Scholar 

  14. L.J. Liu, Y.M. Huang, C.X. Su, L. Fang, M.X. Wu, C.Z. Hu, Appl. Phys. A 104, 1047 (2011)

    Article  ADS  Google Scholar 

  15. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

  16. A.R. Long, Adv. Phys. 31, 553 (1982)

    Article  ADS  Google Scholar 

  17. A.K. Jonscher, Dielectric relaxation in solids (London: Chelsea). J. Phys. D Appl. Phys. 32, 57 (1999)

    Article  ADS  Google Scholar 

  18. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  19. A.K. Jonscher, J. Mater. Sci. 16, 2037 (1981)

    Article  ADS  Google Scholar 

  20. G.Z. Li, Z. Chen, X.J. Sun, L.J. Liu, L. Fang, B. Elouadi, Mater. Res. Bull. 65, 260 (2015)

    Article  Google Scholar 

  21. K. Kalantari, I. Sterianou, S. Karimi, M.C. Ferrarelli, S. Miao, D.C. Sinclair, L.M. Reaney, Adv. Funct. Mater. 21, 3737 (2011)

    Article  Google Scholar 

  22. P.F. Liang, Y.Y. Li, Y.Q. Zhao, L.L. Wei, Z.P. Yang, J. Appl. Phys. 113, 224102 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 11264010, 11564010, 51402196), the Natural Science Foundation of Guangxi (GA139008) and the China Postdoctoral Science Foundation (Grants 2014M552229 and 2015T80915).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biaolin Peng or Laijun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Deng, J., Liu, S. et al. Grain boundary defect compensation in Ti-doped BaFe0.5Nb0.5O3 ceramics. Appl. Phys. A 122, 864 (2016). https://doi.org/10.1007/s00339-016-0407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0407-y

Keywords

Navigation