Skip to main content
Log in

Fatigue properties and impedance analysis of potassium sodium niobate–strontium titanate transparent ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Highly transparent ferroelectric ceramics based on 0.9K0.5Na0.5NbO3–0.1SrTiO3 were prepared using a pressure-less solid-state sintering method without using hot isostatic pressing and spark plasma sintering. An independence electromechanical response of bipolar switching cycles (S 33 only degraded 3.2 % up to 107 cycles) was presented in this transparent ceramics, which indicated an extremely stable property under electric field. From impedance spectroscopy and X-ray photoelectron spectroscopy analyses, it was concluded that such optical transparency and fatigue-resistant behaviors were mainly attributed to the lower density of oxygen vacancies in the ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Glaum, M. Hoffman, J. Am. Ceram. Soc. 97, 665–680 (2014)

    Article  Google Scholar 

  2. D.C. Lupascu, U. Rabe, Phys. Rev. Lett. 89, 187601 (2002)

    Article  ADS  Google Scholar 

  3. X.J. Lou, M. Zhang, S.A.T. Redfern, J.F. Scott, Phys. Rev. Lett. 97, 177601 (2006)

    Article  ADS  Google Scholar 

  4. Y.L. Lin, J. Zhu, Z.P. Wu, W.B. Luo, X.P. Liu, S.J. Wu, L.Z. Hao, J. Alloys Compd. 627, 182–185 (2015)

    Article  Google Scholar 

  5. J.F. Scott, M. Dawber, Appl. Phys. Lett. 76, 3801 (2000)

    Article  ADS  Google Scholar 

  6. J. Hao, Z. Xu, R. Chu, W. Li, J. Du, J. Alloys Compd. 647, 857–865 (2015)

    Article  Google Scholar 

  7. S.F. Wang, J. Zhang, D.W. Luo, F. Gu, D.Y. Tang, Z.L. Dong, G.E.B. Tan, W.X. Que, T.S. Zhang, S. Li, L.B. Kong, Prog. Solid State Chem. 41, 20–54 (2013)

    Article  Google Scholar 

  8. G.H. Haertling, C.E. Land, J. Am. Ceram. Soc. 54, 1–11 (1971)

    Article  Google Scholar 

  9. A. Sternberg, Ferroelectrics 91, 53–67 (1989)

    Article  Google Scholar 

  10. J. Ou-Yang, B. Zhu, Y. Zhang, S. Chen, X. Yang, W. Wei, Appl. Phys. A 118, 1177–1181 (2015)

    Article  ADS  Google Scholar 

  11. J. Fuentes, J. Portelles, M.D. Durruthy-Rodrıguez, H. H’Mok, O. Raymond, J. Heiras, M.P. Cruz, J.M. Siqueiros, Appl. Phys. A 118, 709–715 (2015)

    Article  ADS  Google Scholar 

  12. H. Shimooka, S. Kohiki, T. Kobayashi, M. Kuwabara, J. Mater. Chem. 10, 1511–1512 (2000)

    Article  Google Scholar 

  13. Y.J. Wu, N. Wang, S.Y. Wu, X.M. Chen, J. Am. Ceram. Soc. 94, 1343–1345 (2011)

    Article  Google Scholar 

  14. M. Kosec, V. Bobnar, M. Hrovat, J. Bernard, B. Malic, J. Holc, J. Mater. Res. 19, 1849–1854 (2004)

    Article  ADS  Google Scholar 

  15. V. Bobnar, B. Malič, J. Holc, M. Kosec, R. Steinhausen, H. Beige, J. Appl. Phys. 98, 024113 (2005)

    Article  ADS  Google Scholar 

  16. Z. Liu, H. Fan, C. Long, J. Mater. Sci. 49, 8107–8115 (2014)

    Article  ADS  Google Scholar 

  17. Z. Liu, H. Fan, B. Peng, J. Mater. Sci. 50, 7958–7966 (2015)

    Article  ADS  Google Scholar 

  18. F.Z. Yao, K. Wang, J.F. Li, J. Appl. Phys. 113, 174105 (2013)

    Article  ADS  Google Scholar 

  19. F.Z. Yao, E.A. Patterson, K. Wang, W. Jo, J. Rödel, J.F. Li, Appl. Phys. Lett. 104, 242912 (2014)

    Article  ADS  Google Scholar 

  20. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Sol. 15, 627–637 (1966)

    Article  ADS  Google Scholar 

  21. Z. Wang, H. Gu, Y. Hu, K. Yang, M. Hu, D. Zhou, J. Guan, Cryst. Eng. Comm. 12, 3157–3162 (2010)

    Article  Google Scholar 

  22. F. Li, K.W. Kwok, J. Eur. Ceram. Soc. 33, 123–130 (2013)

    Article  Google Scholar 

  23. S. Lee, R.D. Levi, W. Qu, S.C. Lee, C.A. Randall, J. Appl. Phys. 107, 023523 (2010)

    Article  ADS  Google Scholar 

  24. Z.G. Ye, H. Schmid, Ferroelecrrics 145, 83–108 (1993)

    Article  Google Scholar 

  25. X. Wei, X. Yao, J. Appl. Phys. 100, 064319 (2006)

    Article  ADS  Google Scholar 

  26. L.B. Kong, S. Li, T.S. Zhang, J.W. Zhai, F.Y.C. Boey, J. Ma, Prog. Mater Sci. 55, 840–893 (2010)

    Article  Google Scholar 

  27. G. Viola, T. Saunders, X. Wei, K.B. Chong, H. Luo, M.J. Reece, H. Yan, J. Adv. Dielect. 3, 1350007 (2013)

    Article  Google Scholar 

  28. J. Chen, M.P. Harmer, D.M. Smyth, J. Appl. Phys. 76, 5394 (1994)

    Article  ADS  Google Scholar 

  29. Z. Luo, J. Glaum, T. Granzow, W. Jo, R. Dittmer, M. Hoffman, J Rödel J. Am. Ceram. Soc. 94, 529–535 (2011)

    Article  Google Scholar 

  30. E.A. Patterson, D.P. Cann, Appl. Phys. Lett. 101, 042905 (2012)

    Article  ADS  Google Scholar 

  31. N. Kumar, D.P. Cann, J. Appl. Phys. 114, 054102 (2013)

    Article  ADS  Google Scholar 

  32. Y. Li, F. Wang, X. Ye, Y. Xie, Y. Tang, D. Sun, W. Shi, X. Zhao, H. Luo, J. Am. Ceram. Soc. 97, 3615–3623 (2014)

    Article  Google Scholar 

  33. S.E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804 (1997)

    Article  ADS  Google Scholar 

  34. Q. Ke, X. Lou, Y. Wang, J. Wang, Phys. Rev. B 82, 024102 (2010)

    Article  ADS  Google Scholar 

  35. L. Liu, M. Wu, Y. Huang, Z. Yang, L. Fang, C. Hu, Mater. Chem. Phys. 126, 769–772 (2011)

    Article  Google Scholar 

  36. M. Li, D.C. Sinclair, J. Appl. Phys. 111, 054106 (2012)

    Article  ADS  Google Scholar 

  37. J.J. Dih, R.M. Fulrath, J. Am. Ceram. Soc. 61, 448–451 (1978)

    Article  Google Scholar 

  38. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  ADS  Google Scholar 

  39. J.R. Macdonald, Ann. Biomed. Eng. 20, 289–305 (1992)

    Article  Google Scholar 

  40. J. Li, F. Li, Y. Zhuang, L. Jin, L. Wang, X. Wei, Z. Xu, S. Zhang, J. Appl. Phys. 116, 074105 (2014)

    Article  ADS  Google Scholar 

  41. S. Guo, X. Zhang, Z. Zhou, G. Gao, L. Liu, J. Mater. Chem. A 2, 9236–9243 (2014)

    Article  Google Scholar 

  42. A.J. Stevenson, B.C. Bittel, C.G. Leh, X. Li, E.C. Dickey, P.M. Lenahan, G.L. Messing, Appl. Phys. Lett. 98, 051906 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the supports of the National Natural Science Foundation (51172187), the SPDRF (20116102130002, 20116102120016) and 111 Program (B08040) of MOE, and Xi’an Science and Technology Foundation (CX12174, XBCL-1-08), and Shaanxi Province Science Foundation (2013KW12-02), and the SKLP Foundation (KP201421), and the Fundamental Research Funds for the Central Universities (3102014 JGY01004) of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Liu or Huiqing Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Fan, H., Lei, S. et al. Fatigue properties and impedance analysis of potassium sodium niobate–strontium titanate transparent ceramics. Appl. Phys. A 122, 900 (2016). https://doi.org/10.1007/s00339-016-0437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0437-5

Keywords

Navigation