Skip to main content
Log in

Double exponential I–V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, current conduction mechanisms of the sample (Au/Ti)/Al2O3/n-GaAs were investigated in detail using current–voltage (I–V) measurements in the temperature range of 80–380 K. The semilogarithmic I–V plots reveal two distinct linear regions with different slopes between 0.07–0.30 and 0.30–0.69 V which are called as Region I (RI) and Region II (RII), respectively. The ideality factor (n) and zero-bias barrier height (\(\varPhi_{\rm{bo}}\)) were found to be strong functions of temperature and voltage. In both regions, as the temperature increases, \(\varPhi_{\rm{bo}}\) increases, whereas the value of n decreases. The high value of n at low temperatures is an evidence of deviation from thermionic emission, and it cannot be explained solely by tunneling mechanism, the existence of surface states and interfacial layer. Therefore, the \(\varPhi_{\rm{bo}}\) versus q/kT plots were drawn for two linear regions of lnI–V plots, and these plots also revealed two distinct linear regions with different slopes between two temperature regions of 80–170 and 200–380 K which are called as low- and high-temperature range (LTR and HTR), respectively. Such behavior of these plots confirmed the existence of double Gaussian distribution (DGD) in the samples which in turn has mean barrier heights \(\bar{\varPhi}_{\text{bo}}\) and standard deviations (σ s). These values were obtained from the intercept and slope of these plots as 0.38 eV and 0.061 V for LTR and as 0.88 eV and 0.142 V for HTR (in RI), whereas they were obtained as 0.37 eV and 0.061 V for LTR and as 0.92 eV and 0.148 V for HTR (in RII), respectively. Thus, the modified ln(I s/T 2)−q 2 σ 2s /2k 2 T 2 versus q/kT plots were drawn, and the values of (\(\bar{\varPhi}_{\text{bo}}\)) and effective Richardson constant (A *) were extracted from the intercept and slope of these plots as 0.39 eV and 7.07 A/cm2 K2 for LTR and as 0.92 eV and 8.158 A/cm2 K2 for HTR (in RI), whereas they were extracted as 0.38 eV and 7.92 A/cm2 K2 for LTR and as 0.94 eV and 4.66 A/cm2 K2 for HTR (in RII), respectively. These values of A * for two regions are close to the theoretical value (8.16 A/cm2 K2) of n-type GaAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V.R. Reddy, V. Manjunath, V. Janardhanam, C.H. Leem, C.J. Choi, Double Gaussian distribution of barrier height, interface states, and current transport mechanisms in Au/Bi0.5Na0.5TiO3-BaTiO3/n-GaN MIS structure. J. Electron. Mater. 44, 549–557 (2015)

    Article  ADS  Google Scholar 

  2. T. Çakıcı, B. Güzeldir, M. Sağlam, Temperature dependent of electrical characteristics of Au/n-GaAs/In Schottky diode with In2S3 interfacial layer obtained by using spray pyrolysis method. J. Alloy. Compd. 645, 954–965 (2015)

    Google Scholar 

  3. V. Rajagopal Reddy, V. Janardhanam, C.H. Leem, C.J. Choi, Electrical properties and the double Gaussian distribution of inhomogeneous barrier heights in Se/n-GaN Schottky barrier diode. Superlattices Microstruct. 67, 242–255 (2014)

    Article  ADS  Google Scholar 

  4. E. Özavcı, S. Demirezen, U. Aydemir, Ş. Altındal, A detailed study on current–voltage characteristics of Au/n-GaAs in wide temperature range. Sens. Actuators A 194, 259–268 (2013)

    Article  Google Scholar 

  5. M.S.P. Reddy, H.S. Kang, J.H. Lee, V. Rajagopal Reddy, J.S. Jang, Electrical properties and the role of inhomogeneities at the polyvinyl alcohol/n-InP Schottky barrier interface. J. Appl. Polym. Sci. 39773, 1–10 (2014)

    Google Scholar 

  6. H. Tecimer, A. Türüt, H. Uslu, Ş. Altındal, İ. Uslu, Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs). Sens. Actuators A 199, 194–201 (2013)

    Article  Google Scholar 

  7. D. Korucu, H. Efeoğlu, A. Türüt, Ş. Altındal, Evaluation of lateral barrier height of inhomogeneous photolithography-fabricated Au/n-GaAs Schottky barrier diodes from 80 K to 320 K. Semicond. Process. 15, 480–485 (2012)

    Article  Google Scholar 

  8. O. Pakma, C. Tozlu, N. Kavasoğlu, A.S. Kavasoğlu, S. Özden, I-V–T analysing inhomogeneous Au/Poly(4-vinyl phenol)/p-Si structure with a double Gaussian distribution of barrier heights. J. Sol–Gel. Sci. Technol. 58, 244–250 (2011)

    Article  Google Scholar 

  9. M.S.P. Reddy, A. Ashok Kumar, V. Rajagopal Reddy, Electrical transport characteristics of Ni/Pd/n-GaN Schottky barrier diodes as a function of temperature. Thin Solid Films 519, 3844–3850 (2011)

    Article  ADS  Google Scholar 

  10. M.A. Mayimele, J.P.J. Rensburg, F.D. Auret, M. Diale, Analysis of temperature-dependent current–voltage characteristics and extraction of series resistance in Pd/ZnO Schottky barrier diodes. Phys. B 480, 58–62 (2016)

    Article  ADS  Google Scholar 

  11. M.A. Laurent, G. Gupta, D.J. Suntrup III, S.P. DenBaars, Barrier height inhomogeneity and its impact on (Al, In, Ga) N Schottky diodes. J. Appl. Phys. 119, 064501 (2016)

    Article  ADS  Google Scholar 

  12. N.N. Kumar, V. Reddy, Rajagopal Reddy, Barrier characteristics of Pt/Ru Schottky contacts on n-type GaN based on I–V–T and C–V–T measurements. Bull. Mater. Sci. 35, 53–61 (2011)

    ADS  Google Scholar 

  13. S. Demirezen, Ş. Altındal, Possible current-transport mechanisms in the (Ni/Au)/Al0.22Ga0.78N/AlN/GaN Schottky barrier diodes at the wide temperature range. Curr. Appl. Phys. 10, 1188–1195 (2010)

    Article  Google Scholar 

  14. N. Yıldırım, A. Türüt, V. Türüt, The theoretical and experimental study on double-Gaussian distribution in homogeneous barrier-height Schottky contacts. Microelectron. Eng. 87, 2225–2229 (2010)

    Article  Google Scholar 

  15. F. Yakuphanoğlu, B. Filiz Şenkal, Electrical characterization of the polyaniline including boron/p-type silicon structure for optical sensor applications. Synth. Metals 158, 821–825 (2008)

    Article  Google Scholar 

  16. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts (Clarendon, Oxford, 1988)

    Google Scholar 

  17. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  18. M.K. Hudait, S.B. Krupanidhi, Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures. Phys. B 307, 125–137 (2001)

    Article  ADS  Google Scholar 

  19. R. Tung, Electron transport of inhomogeneous Schottky barriers. Appl. Phys. Lett. 58, 2821–2823 (1991)

    Article  ADS  Google Scholar 

  20. J. Werner, H. Guttler, Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 69(3), 1534 (1991)

    Article  ADS  Google Scholar 

  21. R.F. Schmitsdorf, T.U. Kampen, W. Monch, Correlation between barrier height and interface structure of Schottky diodes. Surf. Sci. 324, 249–256 (1995)

    Article  ADS  Google Scholar 

  22. S. Chand, J. Kumar, Evidence for the double distribution of barrier heights in Pd2Si/n-Si Schottky diodes from I–V–T measurements. Semicond. Sci. Technol. 11, 1203–1208 (1996)

    Article  ADS  Google Scholar 

  23. M. Gülnahar, Electrical characteristics of an Ag/n-InP Schottky diode based on temperature-dependent current–voltage and capacitance–voltage measurements. Metall. Mater. Trans. A 46A, 3960–3970 (2015)

    Article  ADS  Google Scholar 

  24. B. Prasanna Lakshmi, M. Siva Pratap Reddy, A. Ashok Kumar, V. Rajagopal Reddy, Electrical transport properties of Au/SiO2/n-GaN MIS structure in a wide temperature range. Curr. Appl. Phys. 12, 765–772 (2012)

    Article  Google Scholar 

  25. S. Demirezen, Ş. Altındal, İ. Uslu, Two diodes model and illumination effect on the forward and reverse-bias I–V and C–V characteristics of Au/PVA (Bi-doped)/n-Si photodiode at room temperature. Curr. Appl. Phys. 13, 53–59 (2013)

    Article  ADS  Google Scholar 

  26. D.J. Ewing, L.M. Portter, Q. Wahab, X. Ma, T. Sudarshan, S. Tumakha, M. Gao, L.J. Brillson, Inhomogeneities in Ni/4H-SiC Schottky barriers: localized Fermi-level pinning by defect states. J. Appl. Phys. 101, 114514 (2007)

    Article  ADS  Google Scholar 

  27. Z.J. Horvath, Domination of the thermionic-field emission in the reverse I–V characteristics of n-type GaAs Schottky contacts. J Appl. Phys. 64, 6780–6784 (1988)

    Article  ADS  Google Scholar 

  28. A. Türüt, A. Karabulut, K. Ejderha, N. Bıyıklı, Capacitance-conductance characteristics of Au/Ti/Al2O3/n -GaAs structures with very thin Al2O3 interfacial layer. Mater. Res. Express 2, 046301 (2015)

    Article  ADS  Google Scholar 

  29. E. Marıl, A. Kaya, H.G. Çetinkaya, S. Koçyiğit, Ş. Altındal, On the temperature dependent forward-bias current–voltage (I–V) characteristic in Au/2% graphene-cobalt doped (Ca3Co4Ga0.001Ox)/n-Si structure. Mater. Sci. Semicond. Process. 39, 332–338 (2015)

    Article  Google Scholar 

  30. L. Huang, D. Wang, J. Appl. Phys. 117(1–5), 204503 (2015)

    Article  ADS  Google Scholar 

  31. R.T. Tung, Electron transport at metal-semiconductor interfaces: general theory. Phys. Rev. B 45, 13509 (1992)

    Article  ADS  Google Scholar 

  32. Y.J. Lin, J.J. Zeng, H.C. Chang, Temperature-dependent electrical properties for graphene Schottky contact on n-type Si with and without sulfide treatment. Appl. Phys. A 118, 353–359 (2015)

    Article  ADS  Google Scholar 

  33. J.Z. Horvarth, Comment on analysis of I–V measurements on CrSi2-Si Schottky structures in a wide temperature range. Solid-State Electron. 39, 176–178 (1996)

    Article  ADS  Google Scholar 

  34. Ş. Karataş, Ş. Altındal, Analysis of I–V characteristics on Au/n-type GaAs Schottky structures in wide temperature range. Mater. Sci. Eng. B 122, 133–139 (2005)

    Article  Google Scholar 

  35. H. Korkut, N. Yıldırım, A. Türüt, Thermal annealing effects on I–V–T characteristics of sputtered Cr/n-GaAs diodes. Phys. B 404, 4039–4044 (2009)

    Article  ADS  Google Scholar 

  36. R.T. Tung, J.P. Sullivan, F. Schrey, On the inhomogeneity of Schottky barriers. Mater. Sci. Eng. B 14, 266 (1992)

    Article  Google Scholar 

  37. R. Tung, Electron transport of inhomogeneous Schottky barriers. Appl. Phys. Lett. 58, 2821–2823 (1991)

    Article  ADS  Google Scholar 

  38. W. Mönch, Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities. J. Vac. Sci. Technol. B 17, 1867 (1999)

    Article  Google Scholar 

  39. Ö. Demircioğlu, Ş. Karataş, N. Yıldırım, Ö.F. Bakkaloğlu, A. Türüt, Temperature dependent current–voltage and capacitance–voltage characteristics of chromium Schottky contacts formed by electrodeposition technique on n-type Si. J. Alloy. Compd. 509, 6433–6439 (2011)

    Article  Google Scholar 

  40. M. Soylu, F. Yakuphanoğlu, Analysis of barrier height inhomogeneity in Au/n-GaAs Schottky barrier diodes by Tung model. J. Alloy. Compd. 506, 418–422 (2010)

    Article  Google Scholar 

  41. H. Altuntaş, Ş. Altındal, H. Shtrikman, S. Özçelik, A detailed study of current–voltage characteristics in Au/SiO2/n-GaAs in wide temperature range. Microelectron. Reliab. 49, 904–911 (2009)

    Article  Google Scholar 

  42. A. Türüt, Determination of barrier height temperature coefficient by Norde’s method in ideal Co/n-GaAs Schottky contacts. Turk. J. Phys. 36, 235–244 (2012)

    Google Scholar 

  43. T.U. Kampen, S. Park, D.R.T. Zahn, Barrier height engineering of Ag/GaAs(100) Schottky contacts by a thin organic interlayer. Appl. Surf. Sci. 190, 461–466 (2002)

    Article  ADS  Google Scholar 

  44. A.R.V. Roberts, D.A. Evans, Modification of GaAs Schottky diodes by thin organic interlayers. Appl. Phys. Lett. 86, 072105–072108 (2005)

    Article  ADS  Google Scholar 

  45. A. Bengi, Ş. Altındal, S. Özçelik, T.S. Mammadov, Gaussian distribution of inhomogeneous barrier height in Al0.24Ga0.76As/GaAs structures. Phys. B 396, 22–28 (2007)

    Article  ADS  Google Scholar 

  46. R. Hackam, P. Harrop, Electrical properties of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes. IEEE Trans. IEEE Xplore-Electron Devices 19, 1231–1238 (1972)

    Article  Google Scholar 

  47. A.F. Özdemir, A. Türüt, A. Kökce, The double Gaussian distribution of barrier heights in Au/n-GaAs Schottky diodes from I–V–T characteristics. Semicond. Sci. Technol. 21, 298–302 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by The Management Unit of Scientific Research Projects of Süleyman Demirel University (SDUBAP) under 4429-D2-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Faruk Özdemir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güçlü, Ç.Ş., Özdemir, A.F. & Altindal, Ş. Double exponential I–V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range. Appl. Phys. A 122, 1032 (2016). https://doi.org/10.1007/s00339-016-0558-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0558-x

Keywords

Navigation