Skip to main content
Log in

Structural and complex impedance spectroscopic studies of Ni0.5Mg0.3Cu0.2Fe2O4 ferrite nanoparticle

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Spinel ferrite having composition Ni0.5Mg0.3Cu0.2Fe2O4 was prepared by the sol–gel technique at 1473 K. The X-ray diffraction results indicate that the ferrite sample has a cubic spinel-type structure with \(Fd\bar{3}m\) space group. The electrical properties of the studied sample using complex impedance spectroscopy technique have been investigated in the frequency range 102–107 Hz and in the temperature range 300–500 K. The total conductivity curves for sample are found to obey Jonscher power law (σ(ω) = σ dc +  n) with an increase in the frequency exponent (n) as temperature increases. The activation energy deduced from the analysis of the conductivity curves matches very well with the value estimated from the relaxation time, indicating that relaxation process and electrical conductivity are attributed to the same defect. Nyquist plots of impedance show semicircle arcs for sample, and an electrical equivalent circuit has been proposed to explain the impedance results. The effect of frequency and temperature on dielectric constant (ε″) and dielectric loss (tanδ) has also been discussed in terms of hopping of charge carriers between Fe2+ and Fe3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.K. Mandal, S. Singh, P. Dey, J.N. Roy, P.R. Mandal, T.K. Nath, J. Alloys Compd. 656, 887–896 (2016)

    Article  Google Scholar 

  2. M. Abdullah Dar, K. Majid, K.M. Batoo, R. Kotnala, J. Alloys Compd. 632, 307–320 (2015)

    Article  Google Scholar 

  3. V. Jagdeesha Angadi, L. Choudhury, K. Sadhana, H.-S. Liu, R. Sandhya, S. Matteppanavar, B. Rudraswamy, V. Pattar, R.V. Anavekar, K. Praveen, J. Magn. Magn. Mater. 424, 1–11 (2017)

    Article  ADS  Google Scholar 

  4. Z. Liu, Z. Peng, C. Lv, F. Xiuli, Ceram. Int. 43, 1449–1454 (2017)

    Article  Google Scholar 

  5. R.K. Panda, R. Muduli, G. Jayarao, D. Sanyal, D. Behera, J. Alloys Compd. 669, 19–28 (2016)

    Article  Google Scholar 

  6. E. Oumezzine, S. Hcini, M. Baazaoui, E.K. Hlil, M. Oumezzine, Powder Technol. 278, 189–195 (2015)

    Article  Google Scholar 

  7. N. Sivakumar, A. Narayanasamy, K. Shinoda, C.N. Chinnasamy, B. Jeyadevan, J.M. Greneche, J. Appl. Phys. 102, 013916–013923 (2007)

    Article  ADS  Google Scholar 

  8. M. Azizar, A.K.M. Rahman, A. Hossain, Phys. Scr. 89, 025803–025810 (2014)

    Article  ADS  Google Scholar 

  9. B. Ünal, A. Baykal, J. Supercond. Nov. Magn. 27, 469–479 (2014)

    Article  Google Scholar 

  10. Y. Köseoğlu, Ceram. Int. 39, 4221–4230 (2013)

    Article  Google Scholar 

  11. Y. Köseoğlu, M. Bay, M. Tan, A. Baykal, H. Sözeri, R. Topkaya, N. Akdoğan, J. Nanopart. Res. 13, 2235–2244 (2011)

    Article  Google Scholar 

  12. E. Şentürk, Y. Köseoğlu, T. Şaşmaz, F. Alan, M. Tan, J. Alloys Compd. 578, 90–95 (2013)

    Article  Google Scholar 

  13. M. Hashim, Alimuddin, S. Kumar, S.E. Shirsath, R.K. Kotnala, H. Chung, R. Kumar, Powder Technol. 229, 37–44 (2012)

    Article  Google Scholar 

  14. M. Naeem, N.A. Shahb, I.H. Gul, A. Maqsood, J. Alloys Compd. 487, 739–743 (2009)

    Article  Google Scholar 

  15. H. Moradmard, S. Farjami Shayesteh, P. Tohidi, Z. Abbas, M. Khaleghi, J. Alloys Compd. 650, 116–122 (2015)

    Article  Google Scholar 

  16. L. John Berchmans, R. Kalai Selvan, P.N. Selva Kumar, C.O. Augustin, J. Magn. Magn. Mater. 279, 103–110 (2004)

    Article  ADS  Google Scholar 

  17. M.A. Gabal, Y.M. Al Angari, H.M. Zaki, J. Magn. Magn. Mater. 363, 6–12 (2014)

    Article  ADS  Google Scholar 

  18. M.A. El Hiti, J. Phys. D Appl. Phys. 29, 501–505 (1996)

    Article  ADS  Google Scholar 

  19. M. Hashim, S.S. Meena, R.K. Kotnala, S.E. Shirsath, A.S. Roy, A. Parveen, P. Bhatt, S. Kumar, R.B. Jotania, R. Kumar, Alimuddin, J. Alloys Compd. 602, 150–156 (2014)

    Article  Google Scholar 

  20. A.K.M.A. Hossain, M.R. Amin, H. Tanaka, J. Magn. Magn. Mater. 334, 124 (2013)

    Article  ADS  Google Scholar 

  21. M.A. El Hiti, J. Magn. Magn. Mater. 164, I87–196 (1996)

    ADS  Google Scholar 

  22. M.S. Anwar, F. Ahmed, B.H. Koo, Acta Mater. 71, 100–107 (2014)

    Article  Google Scholar 

  23. Y. Köseoğlu, F. Alan, M. Tan, R. Yilgin, M. Öztürk, Ceram. Int. 38, 3625–3634 (2012)

    Article  Google Scholar 

  24. R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  25. J.S. Ghodake, R.C. Kambale, S.V. Salvi, S.R. Sawant, S.S. Suryavanshi, J. Alloys Comp. 486, 830–834 (2009)

    Article  Google Scholar 

  26. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectics Press, London, 1996)

    Google Scholar 

  27. M.S.R. Prasad, K.V. Ramesh, B.R. Babu, K. Trinath, J. Phys. 90, 417–428 (2016)

    Google Scholar 

  28. A. Humaira, M. Asghari, J. Phys: Conf. Ser. 439, 012014–012020 (2013)

    Google Scholar 

  29. S. Bhukal, S. Mor, S. Bansal, J. Singh, S. Singhal, J. Mol. Struct. 2014, 95–102 (1071)

    Google Scholar 

  30. S. Bhukal, T. Namgyal, S. Mor, S. Bansal, S. Singhal, J. Mol. Struct. 2012, 162–167 (1012)

    Google Scholar 

  31. K. Funke, Prog. Solid State Chem. 22, 111–195 (1993)

    Article  Google Scholar 

  32. Z. Ahmad, S. Atiq, S.K. Abbas, S.M. Ramay, S. Riaz, S. Naseem, Ceram. Int. 42, 18271–18282 (2016)

    Article  Google Scholar 

  33. M.-R. Syue, F.-J. Wei, C.-S. Chou, F. Chao-Ming, Thin Solid Films 519, 8303–8306 (2011)

    Article  ADS  Google Scholar 

  34. M. Idrees, M. Nadeem, M.M. Hassan, J. Phys. D Appl. Phys. 43, 155401–155409 (2010)

    Article  ADS  Google Scholar 

  35. V. Mohanty, R. Cheruku, L. Vijayan, G. Govindaraj, J. Mater. Sci. Technol. 30(4), 335–341 (2014)

    Article  Google Scholar 

  36. A. Sinha, A. Dutta, RSC Adv 5, 100330–100338 (2015)

    Article  Google Scholar 

  37. K.M. Batoo, Phys. B 406, 382–387 (2011)

    Article  ADS  Google Scholar 

  38. M. Nadeem, M.J. Akhtar, A.Y. Khan, R. Shaheen, M.N. Hoqu, Chem. Phys. Lett. 366, 433 (2002)

    Article  ADS  Google Scholar 

  39. M. Nadeem, M.J. Akhtar, A.Y. Khan, Solid State Commun. 134, 431 (2005)

    Article  ADS  Google Scholar 

  40. H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, J. Magn. Magn. Mater. 316, 23–28 (2007)

    Article  ADS  Google Scholar 

  41. D. Johnson, ZView: a Software Program for IES Analysis, Version 2.8, Scribner Associates, Inc. Southern Pines, NC (2008)

  42. C.G. Koops, Phys. Rev. 83, 121–124 (1951)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobhi Hcini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaou, M.H., Hcini, S., Mallah, A. et al. Structural and complex impedance spectroscopic studies of Ni0.5Mg0.3Cu0.2Fe2O4 ferrite nanoparticle. Appl. Phys. A 123, 8 (2017). https://doi.org/10.1007/s00339-016-0652-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0652-0

Keywords

Navigation