Skip to main content

Advertisement

Log in

Mg-based compounds for hydrogen and energy storage

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnesium-based alloys attract significant interest as cost-efficient hydrogen storage materials allowing the combination of high gravimetric storage capacity of hydrogen with fast rates of hydrogen uptake and release and pronounced destabilization of the metal–hydrogen bonding in comparison with binary Mg–H systems. In this review, various groups of magnesium compounds are considered, including (1) RE–Mg–Ni hydrides (RE = La, Pr, Nd); (2) Mg alloys with p-elements (X = Si, Ge, Sn, and Al); and (3) magnesium alloys with d-elements (Ti, Fe, Co, Ni, Cu, Zn, Pd). The hydrogenation–disproportionation–desorption–recombination process in the Mg-based alloys (LaMg12, LaMg11Ni) and unusually high-pressure hydrides synthesized at pressures exceeding 100 MPa (MgNi2H3) and stabilized by Ni–H bonding are also discussed. The paper reviews interrelations between the properties of the Mg-based hydrides and pT conditions of the metal–hydrogen interactions, chemical composition of the initial alloys, their crystal structures, and microstructural state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M.B. Ley, L.H. Jepsen, Y.-S. Lee, Y.W. Cho, J.M. Bellosta von Colbe, M. Dornheim, M. Rokni, J.O. Jensen, M. Sloth, Y. Filinchuk, J.E. Jørgensen, F. Besenbacher, T.R. Jensen, Complex hydrides for hydrogen storage—new perspectives. Mater. Today 17(3), 122–128 (2014)

    Article  Google Scholar 

  2. U. Eberle, M. Felderhoff, F. Schüth, Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 48(36), 6608–6630 (2009)

    Article  Google Scholar 

  3. M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, R. Bormann, Hydrogen storage in magnesium-based hydrides and hydride composites. Scr. Mater. 56(10), 841–846 (2007)

    Article  Google Scholar 

  4. A. Zaluska, L. Zaluski, J.O. Ström-Olsen, Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 288(1–2), 217–225 (1999)

    Article  Google Scholar 

  5. J. Huot, G. Liang, R. Schulz, Mechanically alloyed metal hydride systems. Appl. Phys. A Mater. Sci. Process. 72(2), 187–195 (2001)

    Article  ADS  Google Scholar 

  6. K. Alsabawi, T.A. Webb, E.M. Gray, C.J. Webb, Effect of C60 Additive on Magnesium Hydride for Hydrogen Storage. Int. J. Hydrog. Energy 40(33), 10508–10515 (2015)

    Article  Google Scholar 

  7. S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, R. Schulz, Study of the activation process of Mg-based hydrogen storage materials modified by graphite and other carbonaceous compounds. J. Mater. Res. 16(10), 2893–2905 (2011)

    Article  ADS  Google Scholar 

  8. C.J. Webb, A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. J. Phys. Chem. Solids 84, 96–106 (2015)

    Article  ADS  Google Scholar 

  9. M. Paskevicius, D.A. Sheppard, K. Williamson, C.E. Buckley, Metal hydride thermal heat storage prototype for concentrating solar thermal power. Energy 88, 469–477 (2015)

    Article  Google Scholar 

  10. A. Reiser, B. Bogdanovic, K. Schlichte, The application of Mg-based metal-hydrides as heat energy storage systems. Int. J. Hydrog. Energy 25(5), 425–430 (2000)

    Article  Google Scholar 

  11. D.A. Sheppard, M. Paskevicius, C.E. Buckley, Thermodynamics of hydrogen desorption from NaMgH3 and its application as a solar heat storage medium. Chem. Mater. 23(19), 4298–4300 (2011)

    Article  Google Scholar 

  12. G.S. Walker, Multicomponent hydrogen storage systems, in Solid-state Hydrogen Storage, ed. by G.S. Walker (Woodhead Publishing Ltd, Cambridge, 2008), pp. 478–499

    Chapter  Google Scholar 

  13. J.J. Vajo, F. Mertens, C.C. Ahn, R.C. Bowman, B. Fultz, Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si. J. Phys. Chem. B 108(37), 13977–13983 (2004)

    Article  Google Scholar 

  14. R. Janot, F. Cuevas, M. Latroche, A. Percheron-Guégan, Influence of crystallinity on the structural and hydrogenation properties of Mg2X phases (X = Ni, Si, Ge, Sn). Intermetallics 14(2), 163–169 (2006)

    Article  Google Scholar 

  15. J. Zhang, Z. Li, F. Cuevas, M. Latroche, Phase stabilities in the Mg–Si–H system tuned by mechanochemistry. J. Phys. Chem. C 118(38), 21889–21895 (2014)

    Article  Google Scholar 

  16. A.-L. Chaudhary, M. Paskevicius, D.A. Sheppard, C.E. Buckley, Thermodynamic destabilisation of MgH2 and NaMgH3 using Group IV elements Si, Ge or Sn. J. Alloys Compd. 623, 109–116 (2015)

    Article  Google Scholar 

  17. M. Paskevicius, D.A. Sheppard, A.L. Chaudhary, C.J. Webb, E.M.A. Gray, H.Y. Tian, V.K. Peterson, C.E. Buckley, Kinetic limitations in the Mg–Si–H system. Int. J. Hydrog. Energy 36(17), 10779–10786 (2011)

    Article  Google Scholar 

  18. A.-L. Chaudhary, D.A. Sheppard, M. Paskevicius, C.J. Webb, E.M. Gray, C.E. Buckley, Mg2Si nanoparticle synthesis for high pressure hydrogenation. J. Phys. Chem. C 118(2), 1240–1247 (2014)

    Article  Google Scholar 

  19. J. Bystrzycki, T. Płociński, W. Zieliński, Z. Wiśniewski, M. Polanski, W. Mróz, Z. Bojar, K.J. Kurzdłowski, Nano-engineering of magnesium hydride for hydrogen storage. Microelectron. Eng. 86(4–6), 889–891 (2009)

    Article  Google Scholar 

  20. G.S. Walker, M. Abbas, D.M. Grant, C. Udeh, Destabilisation of magnesium hydride by germanium as a new potential multicomponent hydrogen storage system. Chem. Commun. 47(28), 8001 (2011)

    Article  Google Scholar 

  21. F.C. Gennari, F.J. Castro, G. Urretavizcaya, G. Meyer, Catalytic effect of Ge on hydrogen desorption from MgH2. J. Alloys Compd. 334(1–2), 277–284 (2002)

    Article  Google Scholar 

  22. Abbas M. Thermodynamic Tuning of Light Metal Hydrides Multicomponent Systems by Ge [PhD Thesis]. University of Nottingham; 2014

  23. M. Polanski, J. Bystrzycki, The influence of different additives on the solid-state reaction of magnesium hydride (MgH2) with Si. Int. J. Hydrog. Energy 34(18), 7692–7699 (2009)

    Article  Google Scholar 

  24. A. Andreasen, M.B. Sørensen, R. Burkarl, B. Møller, A.M. Molenbroek, A.S. Pedersen, J.W. Andreasen, M.M. Nielsen, T.R. Jensen, Interaction of hydrogen with an Mg–Al alloy. J. Alloys Compd. 404–406, 323–326 (2005)

    Article  Google Scholar 

  25. J.F. Fernández, C.R. Sánchez, Rate determining step in the absorption and desorption of hydrogen by magnesium. J. Alloys Compd. 340(1–2), 189–198 (2002)

    Article  Google Scholar 

  26. J.F. Fernández, C.R. Sánchez, Simultaneous TDS–DSC measurements in magnesium hydride. J. Alloys Compd. 356–357, 348–352 (2003)

    Article  Google Scholar 

  27. G. Friedlmeier, M. Arakawa, T. Hirai, E. Akiba, Preparation and structural, thermal and hydriding characteristics of melt-spun Mg–Ni alloys. J. Alloys Compd. 292(1–2), 107–117 (1999)

    Article  Google Scholar 

  28. E. Callini, L. Pasquini, T.R. Jensen, E. Bonetti, Hydrogen storage properties of Mg–Ni nanoparticles. Int. J. Hydrog. Energy 38(27), 12207–12212 (2013)

    Article  Google Scholar 

  29. A. Zaluska, L. Zaluski, J.O. Ström-Olsen, Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni. J. Alloys Compd. 289(1–2), 197–206 (1999)

    Article  Google Scholar 

  30. S. Orimo, Structural and hydriding properties of the Mg_Ni_H system with nano- and/or amorphous structures. Acta Mater. 45(6), 2271–2278 (1997)

    Article  Google Scholar 

  31. J. Matsuda, N. Uchiyama, T. Kanai, K. Harada, E. Akiba, Effect of Mg/Ni ratio on microstructure of Mg–Ni films deposited by magnetron sputtering. J. Alloys Compd. 617, 47–51 (2014)

    Article  Google Scholar 

  32. J. Matsuda, K. Yoshida, Y. Sasaki, N. Uchiyama, E. Akiba, In situ observation on hydrogenation of Mg–Ni films using environmental transmission electron microscope with aberration correction. Appl. Phys. Lett. 105(8), 083903 (2014)

    Article  ADS  Google Scholar 

  33. R. Bogerd, P. Adelhelm, J.H. Meeldijk, K.P. de Jong, P.E. de Jongh, The structural characterization and H2 sorption properties of carbon-supported Mg1−xNix nanocrystallites. Nanotechnology 20(20), 204019 (2009)

    Article  ADS  Google Scholar 

  34. Y. Wu, M.V. Lototskyy, J.K. Solberg, V.A. Yartys, Effect of microstructure on the phase composition and hydrogen absorption–desorption behaviour of melt-spun Mg–20Ni–8Mm alloys. Int. J. Hydrog. Energy 37(2), 1495–1508 (2012)

    Article  Google Scholar 

  35. S. Løken, J.K. Solberg, J.P. Maehlen, R.V. Denys, M.V. Lototsky, B.P. Tarasov, V.A. Yartys, Nanostructured Mg–Mm–Ni hydrogen storage alloy: structure–properties relationship. J. Alloys Compd. 446–447, 114–120 (2007)

    Article  Google Scholar 

  36. V.A. Yartys, V.E. Antonov, D. Chernyshov, J.C. Crivello, R.V. Denys, V.K. Fedotov, M. Gupta, V.I. Kulakov, M. Latroche, D. Sheptyakov, Structure and chemical bonding in MgNi2H3 from combined high resolution synchrotron and neutron diffraction studies and ab initio electronic structure calculations. Acta Mater. 98, 416–422 (2015)

    Article  Google Scholar 

  37. J.J. Reilly, R.H. Wiswall, Reaction of hydrogen with alloys of magnesium and copper. Inorg. Chem. 6(12), 2220–2223 (1967)

    Article  Google Scholar 

  38. A. Karty, Hydriding and dehydriding kinetics of Mg in a Mg/Mg2Cu eutectic alloy: pressure sweep method. J. Appl. Phys. 50(11), 7200 (1979)

    Article  ADS  Google Scholar 

  39. A. Andreasen, M.B. Sørensen, R. Burkarl, B. Møller, A.M. Molenbroek, A.S. Pedersen, T. Vegge, T.R. Jensen, Dehydrogenation kinetics of air-exposed MgH2/Mg2Cu and MgH2/MgCu2 studied with in situ X-ray powder diffraction. Appl. Phys. A 82(3), 515–521 (2006)

    Article  ADS  Google Scholar 

  40. K.T. Møller, B.R.S. Hansen, A.-C. Dippel, J.-E. Jørgensen, T.R. Jensen, Characterization of gas–solid reactions using in situ powder X-ray diffraction. Z. Anorg. Allg. Chem. 640(15), 3029–3043 (2014)

    Article  Google Scholar 

  41. B.R.S. Hansen, K.T. Møller, M. Paskevicius, A.-C. Dippel, P. Walter, C.J. Webb, C. Pistidda, N. Bergemann, M. Dornheim, T. Klassen, J.-E. Jørgensen, T.R. Jensen, In situ X-ray diffraction environments for high-pressure reactions. J. Appl. Crystallogr. 48(4), 1234–1241 (2015)

    Article  Google Scholar 

  42. Y.S. Au, M. Ponthieu, R. van Zwienen, C. Zlotea, F. Cuevas, K.P. de Jong, P.E. de Jongh, Synthesis of Mg2Cu nanoparticles on carbon supports with enhanced hydrogen sorption kinetics. J. Mater. Chem. A 1(34), 9983 (2013)

    Article  Google Scholar 

  43. M. Norek, T.K. Nielsen, M. Polanski, I. Kunce, T. Płociński, L.R. Jaroszewicz, Y. Cerenius, T.R. Jensen, J. Bystrzycki, Synthesis and decomposition mechanisms of ternary Mg2CoH5 studied using in situ synchrotron X-ray diffraction. Int. J. Hydrog. Energy 36(17), 10760–10770 (2011)

    Article  Google Scholar 

  44. L. Pasquini, E. Callini, M. Brighi, F. Boscherini, A. Montone, T.R. Jensen, C. Maurizio, M.V. Antisari, E. Bonetti, Magnesium nanoparticles with transition metal decoration for hydrogen storage. J. Nanopart. Res. 13(11), 5727–5737 (2011)

    Article  Google Scholar 

  45. H. Shao, M. Felderhoff, F. Schüth, Hydrogen storage properties of nanostructured MgH2/TiH2 composite prepared by ball milling under high hydrogen pressure. Int. J. Hydrog. Energy 36(17), 10828–10833 (2011)

    Article  Google Scholar 

  46. M. Ponthieu, F. Cuevas, J.F. Fernández, L. Laversenne, F. Porcher, M. Latroche, Structural properties and reversible deuterium loading of MgD2–TiD2 Nanocomposites. J. Phys. Chem. C 117(37), 18851–18862 (2013)

    Article  Google Scholar 

  47. E. Callini, L. Pasquini, L.H. Rude, T.K. Nielsen, T.R. Jensen, E. Bonetti, Hydrogen storage and phase transformations in Mg–Pd nanoparticles. J. Appl. Phys. 108(7), 073513 (2010)

    Article  ADS  Google Scholar 

  48. M. Ponthieu, Y.S. Au, K. Provost, C. Zlotea, E. Leroy, J.F. Fernández, M. Latroche, P.E. de Jongh, F. Cuevas, Nanoconfinement of Mg6Pd particles in porous carbon: size effects on structural and hydrogenation properties. J Mater. Chem. A 2(43), 18444–18453 (2014)

    Article  Google Scholar 

  49. M. Polanski, T.K. Nielsen, Y. Cerenius, J. Bystrzycki, T.R. Jensen, Synthesis and decomposition mechanisms of Mg2FeH6 studied by in situ synchrotron X-ray diffraction and high-pressure DSC. Int. J. Hydrog. Energy 35(8), 3578–3582 (2010)

    Article  Google Scholar 

  50. M. Polanski, T. Płociński, I. Kunce, J. Bystrzycki, Dynamic synthesis of ternary Mg2FeH6. Int. J. Hydrog. Energy 35(3), 1257–1266 (2010)

    Article  Google Scholar 

  51. S.S. Raman, D.J. Davidson, J.L. Bobet, O.N. Srivastava, Investigations on the synthesis, structural and microstructural characterizations of Mg-based K2PtCl6 type (Mg2FeH6) hydrogen storage material prepared by mechanical alloying. J. Alloys Compd. 333(1–2), 282–290 (2002)

    Article  Google Scholar 

  52. C. Milanese, A. Girella, G. Bruni, V. Berbenni, P. Cofrancesco, A. Marini, M. Villa, P. Matteazzi, Hydrogen storage in magnesium–metal mixtures: reversibility, kinetic aspects and phase analysis. J. Alloys Compd. 465(1–2), 396–405 (2008)

    Article  Google Scholar 

  53. T. Liu, T. Zhang, X. Zhang, X. Li, Synthesis and hydrogen storage properties of ultrafine Mg–Zn particles. Int. J. Hydrog. Energy 36(5), 3515–3520 (2011)

    Article  MathSciNet  Google Scholar 

  54. S. Deledda, B.C. Hauback, H. Fjellvåg, H-sorption behaviour of mechanically activated Mg–Zn powders. J. Alloys Compd. 446–447, 173–177 (2007)

    Article  Google Scholar 

  55. T.A. Webb, C.J. Webb, A.K. Dahle, E.M. Gray, In-situ neutron powder diffraction study of Mg–Zn alloys during hydrogen cycling. Int. J. Hydrog. Energy 40(25), 8106–8109 (2015)

    Article  Google Scholar 

  56. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951–1953 (1984)

    Article  ADS  Google Scholar 

  57. W. Steurer, S. Deloudi, Fascinating quasicrystals. Acta Crystallogr. A 64(Pt 1), 1–11 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  58. Z. Luo, S. Zhang, Y. Tang, D. Zhao, Quasicrystals in as-cast Mg–Zn–RE alloys. Scr. Metall. Mater. 28(12), 1513–1518 (1993)

    Article  Google Scholar 

  59. A. van Blaaderen, Materials science: quasicrystals from nanocrystals. Nature 461(7266), 892–893 (2009)

    Article  ADS  Google Scholar 

  60. A.M. Viano, R.M. Stroud, P.C. Gibbons, A.F. McDowell, M.S. Conradi, K.F. Kelton, Hydrogenation of titanium-based quasicrystals. Phys. Rev. B: Condens. Matter 51(17), 12026–12029 (1995)

    Article  ADS  Google Scholar 

  61. A.M. Viano, E.H. Majzoub, R.M. Stroud, M.J. Kramer, S.T. Misture, P.C. Gibbons, K.F. Kelton, Hydrogen absorption and storage in quasicrystalline and related Ti–Zr–Ni alloys. Philos. Mag. A 78(1), 131–142 (1998)

    Article  ADS  Google Scholar 

  62. M. Sahlberg, Y. Andersson, Hydrogen absorption in Mg–Y–Zn ternary compounds. J. Alloys Compd. 446–447, 134–137 (2007)

    Article  Google Scholar 

  63. X. Luo, D.M. Grant, G.S. Walker, Hydrogen storage properties for Mg–Zn–Y quasicrystal and ternary alloys. J. Alloys Compd. 645, S23–S26 (2015)

    Article  Google Scholar 

  64. R.V. Denys, V.A. Yartys, Effect of magnesium on the crystal structure and thermodynamics of the La3−xMgxNi9 hydrides. J. Alloys Compd. 509, S540–S548 (2011)

    Article  Google Scholar 

  65. R.V. Denys, V.A. Yartys, C.J. Webb, Hydrogen in La2MgNi9D13: the role of magnesium. Inorg. Chem. 51(7), 4231–4238 (2012)

    Article  Google Scholar 

  66. V. Yartys, R. Denys, Structure–properties relationship in RE3 − xMgxNi9H10–13 (RE = La, Pr, Nd) hydrides for energy storage. J. Alloys Compd. 645, S412–S418 (2015)

    Article  Google Scholar 

  67. R. Denys, V. Yartys, E. Gray, C. Webb, LaNi5-assisted hydrogenation of MgNi2 in the hybrid structures of La1.09Mg1.91Ni9D9.5 and La0.91Mg2.09Ni9D9.4. Energies 8(4), 3198–3211 (2015)

    Article  Google Scholar 

  68. Q. Lai, M. Paskevicius, D.A. Sheppard, C.E. Buckley, A.W. Thornton, M.R. Hill, Q. Gu, J. Mao, Z. Huang, H.K. Liu, Z. Guo, A. Banerjee, S. Chakraborty, R. Ahuja, K.-F. Aguey-Zinsou, Hydrogen storage materials for mobile and stationary applications: current state of the art. ChemSusChem. 8(17), 2789–2825 (2015)

    Article  Google Scholar 

  69. D.A. Sheppard, C. Corgnale, B. Hardy, T. Motyka, R. Zidan, M. Paskevicius, C.E. Buckley, Hydriding characteristics of NaMgH2F with preliminary technical and cost evaluation of magnesium-based metal hydride materials for concentrating solar power thermal storage. RSC Adv. 4(51), 26552–26562 (2014)

    Article  Google Scholar 

  70. J.C. Crivello, J. Zhang, M. Latroche, Structural stability of ABy Phases in the (La, Mg)–Ni system obtained by density functional theory calculations. J. Phys. Chem. C 115(51), 25470–25478 (2011)

    Article  Google Scholar 

  71. J.-C. Crivello, M. Gupta, M. Latroche, First principles calculations of (La, Mg)2Ni7 hydrides. J. Alloys Compd. 645, S5–S8 (2015)

    Article  Google Scholar 

  72. V.A. Yartys, V.E. Antonov, A.I. Beskrovnyy, J.C. Crivello, R.V. Denys, V.K. Fedotov, M. Gupta, V.I. Kulakov, M.A. Kuzovnikov, M. Latroche, Y.G. Morozov, S.G. Sheverev, B.P. Tarasov, Hydrogen-assisted phase transition in a trihydride MgNi2H3 synthesized at high H2 pressures: thermodynamics, crystallographic and electronic structures. Acta Mater. 82, 316–327 (2015)

    Article  Google Scholar 

  73. D.A. Sheppard, M. Paskevicius, T.D. Humphries, M. Felderhoff, G. Capurso, J. Bellosta von Colbe, M. Dornheim, T. Klassen, P.A. Ward,  J.A. Teprovich Jr., C. Corgnale, R. Zidan, D.M. Grant, C.E. Buckley, Metal hydrides for concentrating solar-thermal power energy storage. J. Appl. Phys. A (in preparation)

  74. J.-C. Crivello, B. Dam, R.V. Denys, M. Dornheim, D.M. Grant, J. Huot, T.R. Jensen, P. de Jongh, M. Latroche, C. Milanese, D. Milčius, G.S. Walker, C.J. Webb, C. Zlotea, VA. Yartys, Review of magnesium hydride based materials: development and optimisation. Appl. Phys. A. doi:10.1007/s00339-016-9602-0

  75. P. de Rango, P. Marty, D. Fruchart, Integrated with FC H storage systems utilising magnesium hydride: experimental studies and modelling. Appl. Phys. A (in preparation)

Download references

Acknowledgments

This work is a part of the activities within IEA Task 32 Hydrogen-based Energy Storage. We are grateful for the operating agent Dr. Michael Hirscher and all the experts from the Task 32 for the fruitful collaboration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. J. Webb or V. A. Yartys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crivello, JC., Denys, R.V., Dornheim, M. et al. Mg-based compounds for hydrogen and energy storage. Appl. Phys. A 122, 85 (2016). https://doi.org/10.1007/s00339-016-9601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9601-1

Keywords

Navigation