Skip to main content
Log in

Suitability of hyperspectral imaging technique to evaluate the effectiveness of the cleaning of a crustose lichen developed on granite

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The aim of this paper was to evaluate the effectiveness of the laser cleaning of a complex biogenic patina, a crustose lichen, by means of hyperspectral imaging techniques. Samples of a Hercynian granite from NW Spain colonised by an endolithic crustose lichen (Pertusaria amara) were collected and cleaned following three procedures: a scalpel, the third harmonic of a Nd:YVO4 ns laser and the scalpel followed by the laser. The suitability of the hyperspectral camera as a non-destructive, online, fast and in situ monitoring technique to assess the effectiveness of the cleaning was evaluated using optical microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and colour measurements in CIELAB space. The hyperspectral imaging technique allowed us to measure the reflectivity variations of the cleaned surfaces in a non-invasive way, allowing the identification of the cleaning effectiveness of each procedure. Nevertheless, the results of the hyperspectral imaging technique must be validated by conventional techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.C. Dakal, S.S. Cameotra, Environ. Sci. Eur. 24, 36 (2012). doi:10.1186/2190-4715-24-36

  2. C. Ascaso, J. Wierzchos, R. Castelló, Int. Biodeterior. Biodegrad. 42, 19 (1998)

    Google Scholar 

  3. C. Ascaso, J. Wierzchos, V. Souza-Egipsy, A. de los Rios, J.D. Rodrigues, Int. Biodeterior. Biodegrad. 49, 1 (2002)

    Article  Google Scholar 

  4. C.C. Gaylarde, P.M. Gaylarde, B.A. Neilan, Curr. Microbiol. 65, 183 (2012)

    Article  Google Scholar 

  5. R. Piervittori, O. Salvadori, D. Isocrono, Lichenologist 36, 145 (2004)

    Article  Google Scholar 

  6. B. Prieto, M.R.D. Seaward, H.G.M. Edwards, T. Rivas, B. Silva, Biospectroscopy 5, 53 (1999)

    Article  Google Scholar 

  7. B. Prieto, M.R.D. Seaward, H.G.M. Edwards, T. Rivas, B. Silva, Spectrochim. Acta A 55, 211 (1998)

    Article  ADS  Google Scholar 

  8. E. Doehne, C.A. Price, Stone Conservation: An Overview of Current Research. Getty Conservation Institute: J Paul Getty Museum Publications (Los Ángeles, CA, 2011), p. 175

  9. Th Warscheia, J. Braams, Int. Biodeterior. Biodegrad. 46, 343 (2000)

    Article  Google Scholar 

  10. A. de los Ríos, S. Pérez-Ortega, J. Wierzchos, C. Ascaso, Int. Biodeterior. Biodegrad. 67, 64 (2012)

    Article  Google Scholar 

  11. J. MacMullen, Z. Zhang, H.N. Dhakal, J. Radulovic, A. Karabela, G. Tozzi, S. Hannant, M.A. Alshehri, V. Buhé, C. Herodotou, M. Totomis, N. Bennett, Int. Biodeterior. Biodegrad. 93, 54 (2014)

    Article  Google Scholar 

  12. M.F. La Russa, A. Macchia, S.A. Ruffolo, F. De Leo, M. Barberio, P. Barone, G.M. Crisci, C. Urzì, Int. Biodeterior. Biodegrad. 96, 87 (2014)

    Article  Google Scholar 

  13. M. Tretiach, P. Crisafulli, N. Imai, H. Kashiwadani, K. Hee Moon, H. Wada, O. Salvadori, Int. Biodeterior. Biodegrad. 59, 44 (2007)

    Article  Google Scholar 

  14. P. Sanmartín, F. Villa, B. Silva, F. Cappitelli, B., Prieto. Biodegradation 22, 763 (2011)

    Article  Google Scholar 

  15. S. Leznicka, A. Strzelczyk, D. Wandrychowska, in Proceedings of the Sixth International Congress on Deterioration and Conservation of Stone, (Nicolaus Copernicus University, Torun, Poland, 1988), pp. 102–110

  16. A. Barov, in ICOM Committee for Conservation, (Paris, France, 1987), pp. 465–468

  17. B. Prieto, M.T. Rivas, M.B. Silva, EC environmental research workshop degradation and conservation of granitic rocks in monuments. (Santiago, Spain, 1994)

  18. B. Silva, T. Rivas, B. Prieto, Applied Study of Cultural Heritage and Clays. ed. by J.L. Pérez. Consejo Superior de Investigaciones Científicas (CSIC), ISBN 84-00-08197-8 (Madrid, Spain, 2003), pp. 113–130

  19. G. Caneva, M.P. Nugari, O. Salvadori, Plant Biology for Cultural Heritage: Biodeterioration and Conservation. Getty Conservation Institute, ISBN 978-0-89236-939-3 (Los Ángeles, CA, USA, 2008), p. 400

  20. P. Pouli, M. Oujja, M. Castillejo, Appl. Phys. A 106, 447 (2011)

    Article  ADS  Google Scholar 

  21. M. Ouija, E. Rebollar, M. Castillejo, C. Domingo, C. Cirujano, F. Guerra-Librero, J. Cult. Herit. 6, 321 (2005)

    Article  Google Scholar 

  22. S.S. Potgieter-Vermaak, R.H.M. Godoi, R.V. Grieken, J.H. Potgieter, M. Oujja, M. Castillejo, Spectrochim. Acta A 61, 2460 (2005)

    Article  ADS  Google Scholar 

  23. G. Marakis, P. Pouli, V. Zafiropulos, P. Maravelaki-Kalaitzaki, J. Cult. Herit. 4, 83s (2003)

    Article  Google Scholar 

  24. P. Maravelaki-Kalaitzaki, V. Zafiropulos, C. Fotakis, Appl. Surf. Sci. 148, 92 (1999)

    Article  ADS  Google Scholar 

  25. R.M. Esbert, C.M. Grossi, A. Rojo, F.J. Alonso, M. Montoto, J. Ordaz, M.C. Pérez de Andrés, C. Escudero, M. Barrera, E. Sebastián, C. Rodríguez-Navarro, K. Elert, J. Cult. Herit. 4, 50 (2003)

    Article  Google Scholar 

  26. S. Siano, J. Agresti, I. Cacciari, D. Ciofini, M. Mascalchi, I. Osticioli, A.A. Mencaglia, Appl. Phys. A 106, 419 (2012)

    Article  ADS  Google Scholar 

  27. S. Klein, F. Ferksanati, J. Hildenhagen, K. Dickmann, H. Uphoff, Y. Marakis, V. Zafiropulos, Appl. Surf. Sci. 171, 242–251 (2001)

    Article  ADS  Google Scholar 

  28. I. Osticioli, M. Mascalchi, D. Pinna, S. Siano, Appl. Phys. A 118, 1517 (2015)

    Article  ADS  Google Scholar 

  29. M. Speranza, M. Sanz, M. Ouija, A. de los Rios, J. Wiezchos, S. Pérez-Ortega, M. Castillejo, C. Ascaso, Int. Biodeterior. Biodegrad. 84, 281 (2013)

    Article  Google Scholar 

  30. M. Sanz, M. Oujja, C. Ascaso, A. de los Ríos, S. Pérez-Ortega, V. Souza-Egipsy, J. Wierzchos, M. Speranza, M.V. Cañamares, M. Castillejo, Appl. Surf. Sci. 346, 248 (2015)

    Article  ADS  Google Scholar 

  31. S. Pozo, C. Montojo, T. Rivas, A.J. López-Díaz, M.P. Fiorucci, M.E. López de Silanes, KEM 548, 317 (2013)

    Article  Google Scholar 

  32. J.S. Pozo-Antonio, M.P. Fiorucci, A. Ramil, A.J. López, T. Rivas, Appl. Surf. Sci. 347, 832 (2015)

    Article  Google Scholar 

  33. J. Marczak, A. Koss, P. Targowski, M. Góra, M. Strzelec, A. Sarzyński, W. Skrzeczanowski, R. Ostrowski, A. Rycyk, Sensors 8, 6507 (2008)

    Article  Google Scholar 

  34. H. Liang, Appl. Phys. A 106, 309 (2012)

    Article  ADS  Google Scholar 

  35. M. P. Fiorucci, A. J. López, A. Ramil, S. Pozo, T. Rivas, in Proceedings of the Second International Conference on Applications of Optics and Photonics (2014). doi:10.1117/12.2063777

  36. V. Papadakis, A. Loukaiti, P. Pouli, J. Cult. Herit. 11, 325 (2010)

    Article  Google Scholar 

  37. V. Zafiropulos, C. Balas, A. Manousaki, Y. Marakis, P. Maravelaki-Kalaitzaki, K. Melesanaki, P. Pouli, T. Stratoudaki, S. Klein, J. Hildenhagen, K. Dickmann, K.B.S. Luk’Yanchuk, C. Mujat, A. Dogariu, J. Cult. Herit. 4, 249 (2003)

    Article  Google Scholar 

  38. IGME-Mapa Geológico de España E 1:50000, Hoja 261 Tui, 2nd edition, Servicio de Publicaciones, Ministerio de Industria y Energía (1981)

  39. C-I. Chang, Hyperspectral imaging: techniques for spectral detection and classification. (Springer, New York, 2003)

  40. C-I. Chang, Hyperspectral data processing: Algorithm Design and Analysis. (JohnWiley & Sons, Inc., New Jersey, 2013)

  41. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd edition, (John Wiley & Sons, 2001) p. 366

  42. J.J. Van Thor, N. Fisher, P.R. Richi, J. Phys. Chem. B 109, 20597 (2005)

    Article  Google Scholar 

  43. B. Prieto, P. Sanmartín, B. Silva, F.M.M. Verdú, Óptica Pura y Aplicada 41, 389 (2008)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the research project BIA2014-54186-R. M.P. Fiorucci’s work was partially financed by the project A-TEMPO Avances en tecnologías marinas: producción naval y Offshore. Plataforma robótica subacuática de inspección para el mantenimiento de estructuras Offshore. SEM and FTIR analysis were performed in the support research services of the University of Vigo (CACTI). The authors would like to thank Dr. María Eugenia de Silanes for her contribution in the lichen identification. J.S. Pozo-Antonio was supported by a postdoctoral contract with the University of Vigo within the framework of the 2011–2015 Galician Plan for Research, Innovation and Growth (Plan I2C) for 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Pozo-Antonio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozo-Antonio, J.S., Fiorucci, M.P., Rivas, T. et al. Suitability of hyperspectral imaging technique to evaluate the effectiveness of the cleaning of a crustose lichen developed on granite. Appl. Phys. A 122, 100 (2016). https://doi.org/10.1007/s00339-016-9634-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9634-5

Keywords

Navigation