Skip to main content
Log in

Facile one-pot synthesis of polytypic (wurtzite–chalcopyrite) CuGaS2

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this investigation, monodisperse CuGaS2 nanoparticles intended for use as visible-light-absorbing materials were synthesized using a facile one-step heating method that involved dissolving the precursors copper chloride, gallium acetylacetonate, and thiourea in a solvent consisting of either oleylamine alone or a combination of oleylamine, oleic acid, and 1-octadecene. The shapes of the resulting nanoparticles were either elongated, polygonal, or a mixture of both, depending on whether the crystal structure of the nanoparticles was predominantly wurtzite, predominantly chalcopyrite, or a more balanced mixture of both wurtzite and chalcopyrite (i.e., the nanoparticles were polytypic: both wurtzite and chalcopyrite phases were present). The crystal structure of the synthesized nanoparticles was found to be influenced by the temperature and the solvent applied during synthesis. X-ray diffraction data for the nanoparticles indicated that applying a temperature of 270 °C or using oleylamine, oleic acid solvent, and 1-octadecene during synthesis tended to yield a chalcopyrite phase, whereas applying a somewhat lower temperature (210 °C) or using oleylamine alone during synthesis tended to result in a wurtzite phase. The chemical states of the compounds obtained at different temperatures and using various solvents, as well as their crystal structures, morphologies, and optical properties were characterized via X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy, ultraviolet–visible spectroscopy, and photoluminescence.

Graphical abstract

Optical absorbance spectrum (red line) and photoluminescence spectrum (black line) of a CuGaS2 solid solution, and applications of this material in optoelectronics (photos below the spectra)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Jung, A. Sou, K. Banger, D.-H. Ko, P.C.Y. Chow, C.R. McNeill, H. Sirringhaus, All-inkjet-printed, all-air-processed solar cells. Adv. Energy Mater. 4(1–9), 1400432 (2014)

    Google Scholar 

  2. Y.E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A.R. Uhl, C.M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, A.N. Tiwari, All solution-processed chalcogenide solar cells—from single functional layers towards a 13.8 % efficient CIGS device. Adv. Funct. Mater. 25, 1–16 (2014)

  3. S.M. McLeod, C.J. Hages, N.J. Carter, R. Agrawal, Synthesis and characterization of 15 % efficient CIGSSe solar cells from nanoparticle inks. Prog. Photovolt. Res. Appl. 25, 1–7 (2015)

    Google Scholar 

  4. Y.-K. Liao, M. Brossard, D.-H. Hsieh, T.-N. Lin, M.D.B. Charlton, S.-J. Cheng, C.-H. Chen, J.-L. Shen, L.-T. Cheng, T.-P. Hsieh, F.-I. Lai, S.-Y. Kuo, H.-C. Kuo, P.G. Savvidis, P.G. Lagoud, Highly efficient flexible hybrid nanocrystal–Cu(In, Ga)Se2 (CIGS) solar cells. Adv. Energy Mater. 5(1–6), 1401280 (2014)

  5. W. Feng, W. Zheng, P. An Hu, Solid-state reaction synthesis of two-dimensional CuGaSe2 nanosheets for high performance photodetectors. Phys. Chem. Chem. Phys. 16, 19340–19344 (2014)

    Article  Google Scholar 

  6. M. Steichen, M. Thomassey, S. Siebentritt, P.J. Dale, Controlled electrodeposition of Cu–Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells. Phys. Chem. Chem. Phys. 13, 4292–4302 (2011)

    Article  Google Scholar 

  7. H. Yoon, J.H. Woo, B. Joshi, Y.M. Ra, S.S. Yoon, H.Y. Kim, S.J. Ahn, J.H. Yun, J. Gwak, K.H. Yoon, S.C. James, CuInSe2 (CIS) thin film solar cells by electrostatic spray deposition. J. Electrochem. Soc. 159, 444–449 (2012)

  8. C.H. Lee, D.R. Kim, X. Zheng, Transfer printing methods for flexible thin film solar cells: basic concepts and working principles. ACS Nano 8, 8746–8756 (2014)

    Article  Google Scholar 

  9. H. Azimi, Y. Hou, C.J. Brabec, Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells. Energy Environ. Sci. 7, 1829–1849 (2014)

    Article  Google Scholar 

  10. J. Wang, C. Yan, M.-F. Lin, K. Tsukagoshi, P.S. Lee, Solution-assembled nanowires for high performance flexible and transparent solar-blind photodetectors. J. Mater. Chem. C 3, 596–600 (2015)

    Article  Google Scholar 

  11. H. Yoon, S.H. Na, J.Y. Choi, M.W. Kim, H. Kim, H.S. An, B.K. Min, S.J. Ahn, J.H. Yun, J. Gwak, K.H. Yoon, S.S. Kolekar, B.K. Min, S.J. Ahn, J.H. Yun, J. Gwak, K. Hoon, Carbon- and oxygen-free Cu(InGa)(SSe)2 solar cell with a 4.63 % conversion efficiency by electrostatic spray deposition. ACS Appl. Mater. Interfaces 6, 8369–8377 (2014)

    Article  Google Scholar 

  12. L. Polavarapu, S. Mourdikoudis, I. Pastoriza-Santos, J. Pérez-Juste, Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity. CrystEngComm 17, 3727–3762 (2015)

    Article  Google Scholar 

  13. C. Yang, M. Qin, Y. Wang, D. Wan, F. Huang, J. Lin, Observation of an intermediate band in Sn-doped chalcopyrite with wide-spectrum solar response. Sci. Rep. 3(1–7), 1286 (2013)

    ADS  Google Scholar 

  14. Y. Seminóvski, P. Palacios, J.C. Conesa, P. Wahnón, Thermodynamics of zinc insertion in CuGaS2:Ti, used as a modulator agent in an intermediate-band photovoltaic material. Comput. Theor. Chem. 975, 134–137 (2011)

    Article  Google Scholar 

  15. D. Fuertes Marrón, A. Martí, A. Luque, Thin-film intermediate band chalcopyrite solar cells. Thin Solid Films 517, 2452–2454 (2009)

    Article  ADS  Google Scholar 

  16. D.F. Marrón, A. Martí, A. Luque, Thin-film intermediate band photovoltaics: advanced concepts for chalcopyrite solar cells. Phys. Status Solidi A 206, 1021–1025 (2009)

    Article  ADS  Google Scholar 

  17. C. Tablero, Survey of intermediate band material candidates. Solid State Commun. 133, 97–101 (2005)

    Article  ADS  Google Scholar 

  18. X. Lv, S. Yang, M. Li, H. Li, J. Yi, M. Wang, G. Niu, J. Zhong, Investigation of a novel intermediate band photovoltaic material with wide spectrum solar absorption based on Ti-substituted CuGaS2. Sol. Energy 103, 480–487 (2014)

    Article  ADS  Google Scholar 

  19. N. Xiao, L. Zhu, K. Wang, Q. Dai, Y. Wang, S. Li, Y. Sui, Y. Ma, J. Liu, B. Liu, G. Zou, B. Zou, Synthesis and high-pressure transformation of metastable wurtzite-structured CuGaS2 nanocrystals. Nanoscale 4, 7443–7447 (2012)

    Article  ADS  Google Scholar 

  20. J. Kolny-Olesiak, H. Weller, Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces 5, 12221–12237 (2013)

    Article  Google Scholar 

  21. N. Bao, X. Qiu, Y.H.A. Wang, Z. Zhou, X. Lu, C.A. Grimes, A. Gupta, Facile thermolysis synthesis of CuInS2 nanocrystals with tunable anisotropic shape and structure. Chem. Commun. 47, 9441–9443 (2011)

    Article  Google Scholar 

  22. M. Gusain, P. Kumar, R. Nagarajan, Wurtzite CuInS2: solution based one pot direct synthesis and its doping studies with non-magnetic Ga3+ and magnetic Fe3+ ions. RSC Adv. 3, 18863–18871 (2013)

    Article  Google Scholar 

  23. M. Sugijama, R. Nakai, H. Nakanishi, S.F. Chichibu, Fermi-level pinning at the metal/p-type CuGaS2 interfaces. J. Appl. Phys. 92, 7317–7319 (2002)

    Article  ADS  Google Scholar 

  24. S.K. Kim, J.P. Park, M.K. Kim, K.M. Ok, I.-W. Shim, Preparation of CuGaS2 thin films by two-stage MOCVD method. Sol. Energy Mater. Sol. Cells 92, 1311–1314 (2008)

    Article  Google Scholar 

  25. W.-J. Jeonga, G.-C. Park, Structural and electrical properties of CuGaS2 thin films by electron beam evaporation. Sol. Energy Mater. Sol. Cells 75, 93–100 (2003)

    Article  Google Scholar 

  26. H. Goto, Y. Hashimoto, K. Ito, Efficient thin film solar cell consisting of TCO/CdS/CuInS2/CuGaS2 structure. Thin Solid Films 451–452, 552–555 (2004)

    Article  Google Scholar 

  27. J. Zhong, H. Zhao, C. Zhang, X. Ma, L. Pei, X. Liang, W. Xiang, Sol–gel synthesis and optical properties of CuGaS2 quantum dots embedded in sodium borosilicate glass. J. Alloys Compd. 610, 392–398 (2014)

    Article  Google Scholar 

  28. R.C. Fitzmorris, R.P. Oleksak, Z. Zhou, B.D. Mangum, J.N. Kurtin, G.S. Herman, Structural and optical characterization of CuInS2 quantum dots synthesized by microwave-assisted continuous flow methods. J. Nanopart. Res. 17(1–10), 319 (2015)

    Article  Google Scholar 

  29. J.Q. Hu, B. Deng, C.R. Wang, K.B. Tang, Y.T. Qian, Hydrothermal preparation of CuGaS2 crystallites with different morphologies. Solid State Commun. 121, 493–496 (2002)

    Article  ADS  Google Scholar 

  30. M. Zahedifar, E. Ghanbari, M. Moradi, M. Saadat, Optimized annealing regime of CuGaSe2 nanoparticles prepared by solvothermal method. Phys. Status Solidi A 212, 657–661 (2015)

    Article  Google Scholar 

  31. T.A. Kandiel, D.H. Anjum, P. Sautet, T.L. Bahersd, Electronic structure and photocatalytic activity of wurtzite Cu–Ga–S nanocrystals and their Zn substitution. J. Mater. Chem. A 3, 8896–8904 (2015)

    Article  Google Scholar 

  32. M.D. Regulacio, C. Ye, S.H. Lim, Y. Zheng, Q.-H. Xu, M.-Y. Han, Facile noninjection synthesis and photocatalytic properties of wurtzite-phase CuGaS2 nanocrystals with elongated morphologies. CrystEngComm 15, 5214–5217 (2013)

    Article  Google Scholar 

  33. M. Tabata, K. Maeda, T. Ishihara, T. Minegishi, T. Takata, K. Domen, Photocatalytic hydrogen evolution from water using copper gallium sulfide under visible-light irradiation. J. Phys. Chem. C 114, 11215–11220 (2010)

    Article  Google Scholar 

  34. O. Kluge, D. Friedrich, G. Wagnerb, H. Krautscheid, New organometallic single-source precursors for CuGaS2—polytypism in gallite nanocrystals obtained by thermolysis. Dalton Trans. 41, 8635–8642 (2012)

    Article  Google Scholar 

  35. L. Shi, C. Pei, Q. Li, Ordered arrays of shape tunable CuInS2 nanostructures, from nanotubes to nano test tubes and nanowires. Nanoscale 2, 2126–2130 (2010)

    Article  ADS  Google Scholar 

  36. S.-H. Chang, B.-C. Chiu, T.-L. Gao, S.-L. Jheng, Selective synthesis of copper gallium sulfide (CuGaS2) nanostructures of different sizes, crystal phases, and morphologies. CrystEngComm 16, 3323–3330 (2014)

    Article  Google Scholar 

  37. Y. Vahidshad, M.N. Tahir, A. Iraji Zad, S.M. Mirkazemi, R. Ghasemzadeh, H. Huesmann, W. Tremel, Structural and optical study of Ga3+ substitution in CuInS2 nanoparticles synthesized by a one-pot facile method. J. Phys. Chem. C 118, 24670–24679 (2014)

    Article  Google Scholar 

  38. Y. Vahidshad, M.N. Tahir, S.M. Mirkazemi, A. Iraji Zad, R. Ghasemzadeh, W. Tremel, One-pot thermolysis synthesis of CuInS2 nanoparticles with chalcopyrite–wurtzite polytypism structure. J. Mater. Sci. Mater. Electron. 26, 8960–8972 (2015)

    Article  Google Scholar 

  39. Z. Liu, Q. Hao, R. Tang, L. Wang, K. Tang, Facile one-pot synthesis of polytypic CuGaS2 nanoplates. Nanoscale Res. Lett. 8, 524–529 (2013)

    Article  ADS  Google Scholar 

  40. E. Dilena, Y. Xie, R. Brescia, M. Prato, L. Maserati, R. Krahne, A. Paolella, G. Bertoni, M. Povia, I. Moreels, L. Manna, CuIn x Ga1−x S2 nanocrystals with tunable composition and band gap synthesized via a phosphine-free and scalable procedure. Chem. Mater. 25, 3180–3187 (2013)

    Article  Google Scholar 

  41. M. Kokta, J.R. Carruthers, M. Grasso, H.M. Kasper, B. Tell, Ternary phase relations in the vicinity of chalcopyrite copper gallium sulfide. J. Electron. Mater. 5, 69–89 (1976)

    Article  ADS  Google Scholar 

  42. J. Guo, W.H. Zhou, M. Li, Z.L. Hou, J. Jiao, Z.J. Zhou, S.X. Wu, Synthesis of bullet-like wurtzite CuInS2 nanocrystals under atmospheric conditions. J. Cryst. Growth 359, 72–76 (2012)

    Article  ADS  Google Scholar 

  43. W. Du, X. Qian, J. Yin, Q. Gong, Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy. Chem. Eur. J. 13, 8840–8846 (2007)

    Article  Google Scholar 

  44. Y. Vahidshad, R. Ghasemzadeh, A. Irajizad, S.M. Mirkazemi, A. Masoud, Solvothermal synthesis of CuMS2 (M = Al, In, Fe) nanoparticles and effect of coordinating solvent on the crystalline structure. Scientia Iranica. Trans. Nanotechol. 21, 2468–2478 (2014)

    Google Scholar 

  45. D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang, Y. Lu, Synthesis of Cu–In–S ternary nanocrystals with tunable structure and composition. J. Am. Chem. Soc. 130, 5620–5621 (2008)

    Article  Google Scholar 

  46. W.-C. Huang, C.-H. Tseng, S.-H. Chang, H.-Y. Tuan, C.-C. Chiang, L.-M. Lyu, M.H. Huang, Solvothermal synthesis of zincblende and wurtzite CuInS2 nanocrystals and their photovoltaic application. Langmuir 28, 8496–8501 (2012)

    Article  Google Scholar 

  47. T. Kuzuya, Y. Hamanaka, K. Itoh, T. Kino, K. Sumiyama, Y. Fukunaka, S. Hirai, Phase control and its mechanism of CuInS2 nanoparticles. J. Colloid Interface Sci. 388, 137–143 (2012)

    Article  Google Scholar 

  48. J. Chang, R. Ahmed, H. Wang, H. Liu, R. Li, P. Wang, E.R. Waclawik, ZnO nanocones with high-index {1011} facets for enhanced energy conversion efficiency of dye-sensitized solar cells. J. Phys. Chem. C 117, 13836–13844 (2013)

    Article  Google Scholar 

  49. S. Chen, X.G. Gong, S.-H. Wei, Band-structure anomalies of the chalcopyrite semiconductors CuGaX2 versus AgGaX2. Phys. Rev. B 75(1–9), 205209 (2007)

    Article  ADS  Google Scholar 

  50. C.L. Bailey, L. Liborio, G. Mallia, S. Tomić, N.M. Harrison, Defect physics of CuGaS2. Phys. Rev. B 81(1–8), 205214 (2010)

    Article  ADS  Google Scholar 

  51. I. Aguilera, J. Vidal, P. Wahnon, L. Reining, S. Botti, First-principles study of the band structure and optical absorption of CuGaS2. Phys. Rev. B 84(1–9), 085145 (2011)

    Article  ADS  Google Scholar 

  52. S.F. Chichibu, T. Ohmori, N. Shibata, T. Koyama, T. Onuma, Fabrication of p-CuGaS2/n-ZnO: Al heterojunction light-emitting diode grown by metalorganic vapor phase epitaxy and helicon-wave-excited-plasma sputtering methods. J. Phys. Chem. Solids 66, 1868–1871 (2005)

    Article  ADS  Google Scholar 

  53. B. Tell, P.M. Bridenbaugh, Aspects of the band structure of CuGaS2 and CuGaSe2. Phys. Rev. B 12, 3330–3335 (1975)

    Article  ADS  Google Scholar 

  54. G. Masse, Luminescence of CuGaS2. J. Appl. Phys. 58, 930–935 (1985)

    Article  ADS  Google Scholar 

  55. J.R. Botha, M.S. Branch, P.R. Berndt, A.W.R. Leitch, J. Weber, Defect chemistry in CuGaS2 thin films: a photoluminescence study. Thin Solid Films 515, 6246–6251 (2007)

    Article  ADS  Google Scholar 

  56. W. Hörig, H. Neumann, E. Reccius, H. Weinert, G. Kühn, B. Schumann, Temperature dependence of the absorption edge in CuGaS2. Phys. Status Solidi A 51, 57–62 (1979)

    Article  ADS  Google Scholar 

  57. E. Iliopoulos, D. Doppalapudi, H.M. Ng, T.D. Moustakas, Broadening of near-band-gap photoluminescence in n-GaN films. Appl. Phys. Lett. 73, 375–377 (1998)

    Article  ADS  Google Scholar 

  58. T.R. Ravindran, A.K. Arora, B. Balamurugan, B.R. Mehta, Inhomogeneous broadening in the photoluminescence spectrum of CdS nanoparticles. Nanostruct. Mater. 11, 603–609 (1999)

    Article  Google Scholar 

  59. A.V. Mudryi, M.V. Yakushev, A.V. Karotki, R.W. Martin, Comparison of the optical properties of CuInS2 crystals grown by different methods, in Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1–5 September 2008

  60. C. Xue, D. Papadimitriou, Y.S. Raptis, N. Esser, W. Richter, S. Siebentritt, M.Ch. Lux-Steiner, Compositional dependence of Raman scattering and photoluminescence emission in CuxGaySe2 thin films. J. Appl. Phys. 94, 4341–4347 (2003). doi:10.1063/1.1605813

  61. J. Eberhardt, H. Metzner, R. Goldhahn, F. Hudert, U. Reislöhner, C. Hülsen, J. Cieslak, Th. Hahn, M. Gossla, A. Dietz, G. Gobsch, W. Witthuhn, Defect-related photoluminescence of epitaxial CuInS2. Thin Solid Films 480–481, 415–418 (2005)

  62. J. Krustok, J.H. Schön, H. Collan, M. Yakushev, J. Mädasson, E. Bucher, Origin of the deep center photoluminescence in CuGaSe2 and CuInS2 crystals. J. Appl. Phys. 86, 364–369 (1999). doi:10.1063/1.370739

  63. J.J.M. Binsma, L.J. Giling, J. Bloem, Luminescence of CuInS2. J. Lumin. 27, 35–53 (1982)

  64. G. Massé, N. Lahlou, C. Butti, Luminescence and lattice defects in CuInS2. J. Phys. Chem. Solids 42, 449–454 (1981)

Download references

Acknowledgments

This research was supported by the Iran University of Science and Technology and aided by Professor Wolfgang Tremel at the Johannes Gutenberg-Universität Mainz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Mirkazemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahidshad, Y., Mirkazemi, S.M., Tahir, M.N. et al. Facile one-pot synthesis of polytypic (wurtzite–chalcopyrite) CuGaS2 . Appl. Phys. A 122, 187 (2016). https://doi.org/10.1007/s00339-016-9637-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9637-2

Keywords

Navigation