Skip to main content
Log in

Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A free vibration analysis of shallow and deep curved functionally graded (FG) nanobeam is presented. Differential equations and boundary conditions are obtained using Hamilton’s principle, and then, nonlocal theory is employed to derive differential equations in small scale. Properties of the material are FG in radial direction. In order to investigate the effects of deep curved beam, extensional stiffness, bending–extension coupling stiffness, and bending stiffness are calculated in the deep case, analytically. By employing Navier method, an analytical solution is presented. Results are compared and validated with available studies, and a good agreement is seen. The influences of effective parameters such as geometrical deep term, nonlocal parameter, opening angle, aspect ratio, mode number, and gradient index are discussed in detail. It is found that the frequency of deep curved nanobeam is higher than that of shallow one, and the aspect ratio significantly affects this difference to decrease. Also, it is concluded that the opening angle, nonlocal parameter, and power gradient index can notably influence the amount of frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Rahaeifard, M. Kahrobaiyan, M. Ahmadian, in ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2009), pp. 539–544

  2. M. Kahrobaiyan, M. Asghari, M. Rahaeifard, M. Ahmadian, Int. J. Eng. Sci. 48, 1985–1994 (2010)

    Article  Google Scholar 

  3. X. Zang, Q. Zhou, J. Chang, Y. Liu, L. Lin, Microelectron. Eng. 132, 192–206 (2015)

    Article  Google Scholar 

  4. S. Iijima, Nature 354, 56–58 (1991)

    Article  ADS  Google Scholar 

  5. A.C. Eringen, Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  Google Scholar 

  6. A.C. Eringen, D. Edelen, Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  Google Scholar 

  7. A.C. Eringen, J. Appl. Phys. 54, 4703–4710 (1983)

    Article  ADS  Google Scholar 

  8. A. Eringen, in DTIC Document (1984)

  9. H.-S. Shen, L. Shen, C.-L. Zhang, Appl. Phys. A 103, 103–112 (2011)

    Article  ADS  Google Scholar 

  10. J. Reddy, Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  Google Scholar 

  11. M. Şimşek, H. Yurtcu, Compos. Struct. 97, 378–386 (2013)

    Article  Google Scholar 

  12. O. Rahmani, A.A. Jandaghian, Appl. Phys. A 119, 1019–1032 (2015)

    Article  ADS  Google Scholar 

  13. A.A. Jandaghian, O. Rahmani, J. Mech. Sci. Technol. 29, 3175–3182 (2015)

    Article  Google Scholar 

  14. A.A. Pirmohammadi, M. Pourseifi, O. Rahmani, S.A.H. Hoseini, Appl. Phys. A 117, 1547–1555 (2014)

    Article  Google Scholar 

  15. J.-X. Shi, Q.-Q. Ni, X.-W. Lei, T. Natsuki, Appl. Phys. A 115, 213–219 (2014)

    Article  ADS  Google Scholar 

  16. T. Natsuki, N. Matsuyama, Q.-Q. Ni, Appl. Phys. A 120, 1309–1313 (2015)

    Article  ADS  Google Scholar 

  17. O. Rahmani, S.A.H. Hosseini, M.H. Noroozi Moghaddam, I. Fakhari Golpayegani, Int. J. Appl. Mech. 07, 1550036 (2015)

    Article  Google Scholar 

  18. M. Pourseifi, O. Rahmani, S.A.H. Hoseini, Meccanica 50, 1351–1369 (2015)

    Article  MathSciNet  Google Scholar 

  19. O. Rahmani, M.H. Noroozi Moghaddam, Adv. Mater. Res. 829, 790–794 (2014)

    Article  Google Scholar 

  20. O. Rahmani, S. Ghaffari, Adv. Mater. Res. 829, 231–235 (2014)

    Article  Google Scholar 

  21. O. Rahmani, Acta Phys. Pol. A 125, 532–533 (2014)

    Article  Google Scholar 

  22. A. Jandaghian, O. Rahmani, J. Mech. 32, 1–9 (2016)

    Article  Google Scholar 

  23. O. Rahmani, O. Pedram, Int. J. Eng. Sci. 77, 55–70 (2014)

    Article  MathSciNet  Google Scholar 

  24. A.A. Pisano, P. Fuschi, Int. J. Solids Struct. 40, 13–23 (2003)

    Article  MathSciNet  Google Scholar 

  25. R. Barretta, L. Feo, R. Luciano, F. Marotti de Sciarra, Compos. Struct. 139, 104–110 (2016)

    Article  Google Scholar 

  26. A.M. Zenkour, M. Sobhy, Phys. E 70, 121–128 (2015)

    Article  Google Scholar 

  27. J.W. Yan, L.H. Tong, C. Li, Y. Zhu, Z.W. Wang, Compos. Struct. 125, 304–313 (2015)

    Article  Google Scholar 

  28. F. Ebrahimi, E. Salari, Acta Astronaut. 113, 29–50 (2015)

    Article  ADS  Google Scholar 

  29. S. El-Borgi, R. Fernandes, J.N. Reddy, Int. J. Non-Linear Mech. 77, 348–363 (2015)

    Article  ADS  Google Scholar 

  30. A. Jandaghian, A. Jafari, O. Rahmani, Appl. Math. Model. 37, 7154–7163 (2013)

    Article  MathSciNet  Google Scholar 

  31. O. Rahmani, K. Malekzadeh, S. Mohammad, R. Khalili, in Materials Science Forum, ed. by L.G. Rosa, F. Margarido (Trans Tech, Dürnten, 2010), pp. 1143–1149

  32. O. Rahmani, S. Khalili, K. Malekzadeh, H. Hadavinia, Compos. Struct. 91, 229–235 (2009)

    Article  Google Scholar 

  33. F. Tornabene, N. Fantuzzi, E. Viola, R.C. Batra, Compos. Struct. 119, 67–89 (2015)

    Article  Google Scholar 

  34. F. Tornabene, N. Fantuzzi, M. Bacciocchi, E. Viola, Compos. B Eng. 89, 187–218 (2016)

    Article  Google Scholar 

  35. F. Tornabene, N. Fantuzzi, M. Bacciocchi, Compos. B Eng. 67, 490–509 (2014)

    Article  Google Scholar 

  36. A.E. Alshorbagy, M. Eltaher, F. Mahmoud, Appl. Math. Model. 35, 412–425 (2011)

    Article  MathSciNet  Google Scholar 

  37. M. Eltaher, S.A. Emam, F. Mahmoud, Appl. Math. Comput. 218, 7406–7420 (2012)

    Article  MathSciNet  Google Scholar 

  38. M. Hajianmaleki, M.S. Qatu, Compos. B Eng. 43, 1767–1775 (2012)

    Article  Google Scholar 

  39. Y. Kiani, M. Sadighi, M.R. Eslami, Compos. Struct. 102, 205–216 (2013)

    Article  Google Scholar 

  40. L. Jun, R. Guangwei, P. Jin, L. Xiaobin, W. Weiguo, Mech. Des. Struct. Mach. 42, 111–129 (2014)

    Article  Google Scholar 

  41. M. Qatu, J. Sound Vib. 159, 327–338 (1992)

    Article  ADS  Google Scholar 

  42. A. Khdeir, J. Reddy, Int. J. Solids Struct. 34, 1217–1234 (1997)

    Article  Google Scholar 

  43. M.S. Qatu, Int. J. Solids Struct. 36, 2917–2941 (1999)

    Article  Google Scholar 

  44. M. Yaghoubshahi, E. Asadi, S. Fariborz, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225, 292–303 (2011)

    Google Scholar 

  45. M.S. Qatu, Int. J. Solids Struct. 30, 2743–2756 (1993)

    Article  Google Scholar 

  46. M.S. Qatu, Vibration of Laminated Shells and Plates (Elsevier, Amsterdam, 2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Rahmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.A.H., Rahmani, O. Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model. Appl. Phys. A 122, 169 (2016). https://doi.org/10.1007/s00339-016-9696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9696-4

Keywords

Navigation