Skip to main content
Log in

Single-step synthesis of In2O3 nanowires decorated with TeO2 nanobeads and their acetone-sensing properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In2O3 nanowires decorated with TeO2 nanobeads were synthesized by a facile single-step thermal evaporation process, and their acetone-gas-sensing properties were examined. The diameters and lengths of the In2O3 nanowires ranged from 10 to 20 nm and up to 100 μm, respectively, whereas the diameters of the TeO2 beads ranged from 50 to 200 nm. The TeO2-decorated In2O3 nanowire sensor showed stronger response to acetone gas than the pristine In2O3 nanowire sensor. The pristine and TeO2-decorated In2O3 nanowires exhibited sensitivity of ~10.13 and ~24.87, respectively, to 200 ppm acetone at 300 °C. The decorated nanowire sensor also showed much more rapid response and recovery than the latter. Both sensors showed the strongest response to acetone gas at 300 °C, respectively. The mechanism and origin of the enhanced acetone-gas-sensing performance of the TeO2-decorated In2O3 nanowire sensor compared to the pristine In2O3 nanowire sensor were discussed in detail. The enhanced sensing performance of the TeO2-decorated In2O3 nanowire is mainly due to the modulation of the potential barrier height at the TeO2–In2O3 interface, high catalytic activity of TeO2, and creation of active adsorption sites by incorporation of TeO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Adv. Mater. 15, 997 (2003)

    Article  Google Scholar 

  2. Y. Liu, E. Koep, M. Liu, Chem. Mater. 17, 3997 (2005)

    Article  Google Scholar 

  3. Q. Wan, T. Wang, Chem. Commun. 1, 3841 (2005)

    Article  Google Scholar 

  4. H. Kim, C. Jin, S. Park, S. Kim, C. Lee, Sens. Actuators B 161, 594 (2012)

    Article  Google Scholar 

  5. A. Kolmakov, D. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 5, 667 (2005)

    Article  ADS  Google Scholar 

  6. S. Park, S. An, Y. Mun, C. Lee, ACS Appl. Mater. Interfaces 5, 4285 (2013)

    Article  Google Scholar 

  7. J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, N. Yamazoe, Sens. Actuators B 49, 121 (1998)

    Article  Google Scholar 

  8. T. Rakshit, S.P. Mondal, I. Manna, S.K. Ray, ACS Appl. Mater. Interfaces 4, 6085 (2012)

    Article  Google Scholar 

  9. C. Jin, S. Park, H. Kim, C. Lee, Sens. Actuators B 161, 223 (2012)

    Article  Google Scholar 

  10. L. Lin, Y. Yang, L. Men, X. Wang, D. He, Y. Chai, B. Zhao, S. Ghoshroy, Q. Tang, Nanoscale 5, 588 (2013)

    Article  ADS  Google Scholar 

  11. S. Park, S. Park, J. Jung, T. Hong, S. Lee, H.W. Kim, C. Lee, Ceram. Int. 40, 11051 (2014)

    Article  Google Scholar 

  12. C. Cao, C. Hu, X. Wang, S. Wang, Y. Tian, H. Zhang, Sens. Actuators B 156, 114 (2011)

    Article  Google Scholar 

  13. S. Kim, S. Park, S. Park, C. Lee, Sens. Actuators B 209, 180 (2015)

    Article  Google Scholar 

  14. S. Fan, A. Srivastava, V. Dravid, Appl. Phys. Lett. 95, 142106 (2009)

    Article  ADS  Google Scholar 

  15. D. Miller, S. Akbar, P. Morris, Sens. Actuators B 204, 250 (2014)

    Article  Google Scholar 

  16. A. Gurlo, N. Barsan, U. Weimar, M. Ivanovskaya, A. Taurion, P. Siciliano, Chem. Mater. 15, 4377 (2003)

    Article  Google Scholar 

  17. M. Atashbar, B. Gong, H. Sun, W. Wlodarski, R. Lamb, Thin Solid Films 354, 222 (1999)

    Article  ADS  Google Scholar 

  18. S. Li, Z. Wang, P. Xiao, C. Zhao, R. Xiao, B. Yang, T. Zhang, M. Zhang, Cryst. Eng. Comm. 16, 5716–5723 (2014)

    Article  Google Scholar 

  19. S. Bianchi, E. Comini, M. Ferroni, G. Faglia, A. Vomiero, G. Sberveglieri, Sens. Actuators B 118, 204 (2006)

    Article  Google Scholar 

  20. M. Ivanonskaya, A. Gurlo, P. Bogdanov, Sens. Actuators B 77, 264 (2001)

    Article  Google Scholar 

  21. J. McCue, J. Ying, Chem. Mater. 19, 1009 (2007)

    Article  Google Scholar 

  22. Z. Zhan, D. Jiang, J. Xu, Mater. Chem. Phys. 90, 250 (2005)

    Article  Google Scholar 

  23. P. Manjula, R. Boppella, S.V. Manorama, ACS Appl. Mater. Interfaces 3(8), 3140–3145 (2011)

    Google Scholar 

  24. S. Park, S. An, H. Ko, S. Lee, C. Lee, Sens. Actuators B 188, 1270 (2013)

    Article  Google Scholar 

  25. N. Barsan, U. Weimar, J. Electroceram. 7, 143 (2001)

    Article  Google Scholar 

  26. O. Safonova, G. Delabouglise, B. Chenevier, A. Gaskov, M. Labeau, Mater. Sci. Eng. C 21, 105 (2002)

    Article  Google Scholar 

  27. A. Kolmakov, M. Moskovits, Annu. Rev. Mater. Res. 34, 151 (2004)

    Article  ADS  Google Scholar 

  28. L.L. Wang, Z. Lou, T. Fei, T. Zhang, Sens. Actuators B 161, 178 (2012)

    Article  Google Scholar 

  29. D. Patil, L. Patil, P. Patil, Sens. Actuators B 126, 368 (2007)

    Article  Google Scholar 

  30. S. Park, H. Ko, S. Kim, C. Lee, A.C.S. Appl, Mater. Interfaces 6, 9595 (2014)

    Article  Google Scholar 

  31. S. Kar, S. Chakrabarti, S. Chaudhuri, Nanotechnology 17, 3058 (2006)

    Article  Google Scholar 

  32. S. Beke, K. Sugioka, K. Midorikawa, Á. Péter, L. Nánai, J. Bonse J. Phys. D Appl. Phys. 43, 025401 (2010)

    Article  ADS  Google Scholar 

  33. L. Xing, S. Yuan, Z. Chen, Y. Chen, X. Xue, Nanotechnology 22, 225502 (2011)

    Article  ADS  Google Scholar 

  34. E.V. Ramos-Fernandez, N.J. Geels, N.R. Shiju, G. Rothenberg, Green Chem. 16, 3358 (2014)

    Article  Google Scholar 

  35. J. Miki, Y. Osada, T. Konishi, Y. Tachibana, T. Shikada, J. Jpn. Pet. Inst. 39, 34 (1996)

    Article  Google Scholar 

  36. J. Miki, Y. Osada, Y. Tachibana, T. Shikada, Catal. Lett. 30, 263 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2010-0020163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongmu Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Kheel, H., Sun, GJ. et al. Single-step synthesis of In2O3 nanowires decorated with TeO2 nanobeads and their acetone-sensing properties. Appl. Phys. A 122, 269 (2016). https://doi.org/10.1007/s00339-016-9791-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9791-6

Keywords

Navigation