Skip to main content
Log in

Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper investigates the analysis for free transverse vibration of a cracked microbeam based on the modified couple stress theory within the framework of Euler–Bernoulli beam theory. The governing equation and the related boundary conditions are derived by using Hamilton’s principle. The cracked beam is modeled by dividing the beam into two segments connected by a rotational spring located at the cracked section. This model invokes the consideration of the additional strain energy caused by the crack and promotes a discontinuity in the bending slope. In this investigation, the influence of diverse crack position, crack severity, material length scale parameter as well as various Poisson’s ratio on natural frequencies is studied. A comparison with the previously published studies is made, in which a good agreement is observed. The results illustrate that the aforementioned parameters are playing a significant role on the dynamic behavior of the microbeam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.K. Abu Al-Rub, G.Z. Voyiadjis, Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments. Int. J. Plast 20(6), 1139–1182 (2004)

    Article  Google Scholar 

  2. F. Yang et al., Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  3. D.C.C. Lam et al., Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  ADS  MATH  Google Scholar 

  4. M.A. Haque, M.T.A. Saif, Strain gradient effect in nanoscale thin films. Acta Mater. 51(11), 3053–3061 (2003)

    Article  Google Scholar 

  5. R.D. Mindlin, Influence of couple-stresses on stress concentrations. Exp. Mech. 3(1), 1–7 (1963)

    Article  MathSciNet  Google Scholar 

  6. R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. R.A. Toupin, Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. A.C. Eringen, Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Asghari, M.H. Kahrobaiyan, M.T. Ahmadian, A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48(12), 1749–1761 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. A.A. Pirmohammadi et al., Modeling and active vibration suppression of a single-walled carbon nanotube subjected to a moving harmonic load based on a nonlocal elasticity theory. Appl. Phys. A 117(3), 1547–1555 (2014)

    Article  Google Scholar 

  11. J. Bin, C. Wanji, A new analytical solution of pure bending beam in couple stress elasto-plasticity: theory and applications. Int. J. Solids Struct. 47(6), 779–785 (2010)

    Article  MATH  Google Scholar 

  12. L. Yin et al., Vibration analysis of microscale plates based on modified couple stress theory. Acta Mech. Solida Sin. 23(5), 386–393 (2010)

    Article  Google Scholar 

  13. L.-L. Ke, Y.-S. Wang, Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93(2), 342–350 (2011)

    Article  MathSciNet  Google Scholar 

  14. B. Akgöz, Ö. Civalek, Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Compos. Struct. 98, 314–322 (2013)

    Article  Google Scholar 

  15. J. Kim, J.N. Reddy, Analytical solutions for bending, vibration, and buckling of FGM plates using a couple stress-based third-order theory. Compos. Struct. 103, 86–98 (2013)

    Article  Google Scholar 

  16. M. Şimşek, J.N. Reddy, Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013)

    Article  MathSciNet  Google Scholar 

  17. L. Wang, Y.Y. Xu, Q. Ni, Size-dependent vibration analysis of three-dimensional cylindrical microbeams based on modified couple stress theory: a unified treatment. Int. J. Eng. Sci. 68, 1–10 (2013)

    Article  MathSciNet  Google Scholar 

  18. R. Ansari et al., Nonlinear vibrations of functionally graded Mindlin microplates based on the modified couple stress theory. Compos. Struct. 114, 124–134 (2014)

    Article  Google Scholar 

  19. M.H. Kahrobaiyan, M. Asghari, M.T. Ahmadian, A Timoshenko beam element based on the modified couple stress theory. Int. J. Mech. Sci. 79, 75–83 (2014)

    Article  MATH  Google Scholar 

  20. M. Şimşek, Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method. Compos. Struct. 112, 264–272 (2014)

    Article  Google Scholar 

  21. M. Tang et al., Size-dependent vibration analysis of a microbeam in flow based on modified couple stress theory. Int. J. Eng. Sci. 85, 20–30 (2014)

    Article  Google Scholar 

  22. K.S. Al-Basyouni, A. Tounsi, S.R. Mahmoud, Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position. Compos. Struct. 125, 621–630 (2015)

    Article  Google Scholar 

  23. R. Ansari, M.A. Ashrafi, A. Arjangpay, An exact solution for vibrations of postbuckled microscale beams based on the modified couple stress theory. Appl. Math. Model. 39(10–11), 3050–3062 (2015)

    Article  MathSciNet  Google Scholar 

  24. H.L. Dai, Y.K. Wang, L. Wang, Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory. Int. J. Eng. Sci. 94, 103–112 (2015)

    Article  MathSciNet  Google Scholar 

  25. A.M. Dehrouyeh-Semnani et al., Size-dependent frequency and stability characteristics of axially moving microbeams based on modified couple stress theory. Int. J. Eng. Sci. 97, 98–112 (2015)

    Article  MathSciNet  Google Scholar 

  26. L. He et al., A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory. Compos. Struct. 130, 107–115 (2015)

    Article  Google Scholar 

  27. M. Mohammad-Abadi, A.R. Daneshmehr, Modified couple stress theory applied to dynamic analysis of composite laminated beams by considering different beam theories. Int. J. Eng. Sci. 87, 83–102 (2015)

    Article  MathSciNet  Google Scholar 

  28. M. Mohammadabadi, A.R. Daneshmehr, M. Homayounfard, Size-dependent thermal buckling analysis of micro composite laminated beams using modified couple stress theory. Int. J. Eng. Sci. 92, 47–62 (2015)

    Article  MathSciNet  Google Scholar 

  29. M.M.S. Fakhrabadi, Size effects on nanomechanical behaviors of nanoelectronics devices based on consistent couple-stress theory. Int. J. Mech. Sci. 92, 146–153 (2015)

    Article  Google Scholar 

  30. H.-T. Thai et al., Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory. Compos. Struct. 123, 337–349 (2015)

    Article  Google Scholar 

  31. M. Ghadiri, N. Shafiei, Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions. Acta Astronaut. 121, 221–240 (2016)

    Article  ADS  Google Scholar 

  32. E.K. Kakhki, S.M. Hosseini, M. Tahani, An analytical solution for thermoelastic damping in a micro-beam based on generalized theory of thermoelasticity and modified couple stress theory. Appl. Math. Model. 40(4), 3164–3174 (2016)

    Article  MathSciNet  Google Scholar 

  33. V.R. Hiwarkar, V.I. Babitsky, V.V. Silberschmidt, Crack as modulator, detector and amplifier in structural health monitoring. J. Sound Vib. 331(15), 3587–3598 (2012)

    Article  ADS  Google Scholar 

  34. G. Yan et al., A novel approach to detecting breathing-fatigue cracks based on dynamic characteristics. J. Sound Vib. 332(2), 407–422 (2013)

    Article  ADS  Google Scholar 

  35. L. Wang et al., Damage detection of RC beams based on experiment and analysis of nonlinear dynamic characteristics. Constr. Build. Mater. 29, 420–427 (2012)

    Article  Google Scholar 

  36. S. Caddemi, I. Caliò, F. Cannizzaro, Closed-form solutions for stepped Timoshenko beams with internal singularities and along-axis external supports. Arch. Appl. Mech. 83(4), 559–577 (2012)

    Article  MATH  Google Scholar 

  37. B.S.M. Hasheminejad et al., Free transverse vibrations of cracked nanobeams with surface effects. Thin Solid Films 519(8), 2477–2482 (2011)

    Article  ADS  Google Scholar 

  38. S. Hosseini-Hashemi et al., Dynamic behavior of thin and thick cracked nanobeams incorporating surface effects. Compos. Part B Eng. 61, 66–72 (2014)

    Article  Google Scholar 

  39. J.-C. Hsu, H.-L. Lee, W.-J. Chang, Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory. Curr. Appl. Phys. 11(6), 1384–1388 (2011)

    Article  ADS  Google Scholar 

  40. J. Loya et al., Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model. J. Appl. Phys. 105(4), 044309 (2009)

    Article  ADS  Google Scholar 

  41. H. Roostai, M. Haghpanahi, Vibration of nanobeams of different boundary conditions with multiple cracks based on nonlocal elasticity theory. Appl. Math. Model. 38(3), 1159–1169 (2014)

    Article  MathSciNet  Google Scholar 

  42. K. Torabi, J. Nafar Dastgerdi, An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model. Thin Solid Films 520(21), 6595–6602 (2012)

    Article  ADS  Google Scholar 

  43. K. Wang, B. Wang, Timoshenko beam model for the vibration analysis of a cracked nanobeam with surface energy. J. Vib. and Control 21(12), 2452–2464 (2015)

    Article  MathSciNet  Google Scholar 

  44. X. Zhao et al., Green's functions for the forced vibrations of cracked Euler–Bernoulli beams. Mech. Syst. Signal Process. 68–69, 155–175 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sourki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sourki, R., Hoseini, S.A.H. Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory. Appl. Phys. A 122, 413 (2016). https://doi.org/10.1007/s00339-016-9961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9961-6

Keywords

Navigation