Skip to main content
Log in

The lowered dielectric loss tangent and grain boundary effects in fluorine-doped calcium copper titanate ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of F concentration on the dielectric properties and electric modulus of CaCu3Ti4O12−x F x ceramics (0 ≦ x ≦ 0.8) were investigated in detail. Proper amount of F substitution in CaCu3Ti4O12−x F x ceramics reduced the dielectric loss tangent. When x = 0.8, the dielectric loss tangent of CaCu3Ti4O12−x F x ceramic was about 0.05 (at 5 kHz), which was the lowest value and exhibited the highest grain boundary resistance (1.18 MΩ); meanwhile, the samples retained a relatively high dielectric constant above 7000 over a wide frequency range of 100 Hz to 1 MHz. The grain size was reduced as the F doping concentration increased, which enhanced grain boundary resistance, and the decreased dielectric loss tangent was attributed to the increased grain boundary resistance. With the increase of F concentration, the dielectric relaxation behaviors correlated with the grain boundary effects were significantly enhanced. The thermal-activated Schottky-type barrier was formed in the grain boundaries, and CaCu3Ti4O12−x F x ceramics had a nonlinear-Ohmic property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  ADS  Google Scholar 

  2. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217 (2000)

    Article  ADS  Google Scholar 

  3. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

    Article  ADS  Google Scholar 

  4. B. Xu, J. Zhang, Z. Tian, S.L. Yuan, Mater. Lett. 75, 87 (2012)

    Article  Google Scholar 

  5. W.H. Yang, S.H. Yu, R. Sun, R.X. Du, Integr. Ferroelectr. 142, 61 (2013)

    Article  Google Scholar 

  6. A.F.L. Almeida, R.R. Silva, H.H.B. Rocha, P.B.A. Fechine, F.S.A. Cavalcanti, M.A. Valente, F.N.A. Freire, R. Sohn, A.S.B. Sombra, Phys. B 403, 586 (2008)

    Article  ADS  Google Scholar 

  7. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 17 (2004)

    Article  Google Scholar 

  8. L.X. He, J.B. Neaton, M.H. Cohen, D. Vanderbilt, C.C. Homes, Phys. Rev. B 65, 214112 (2002)

    Article  ADS  Google Scholar 

  9. L. Sun, Z.D. Wang, Y.J. Shi, E.S. Cao, Y.J. Zhang, H. Peng, L. Ju, Ceram. Int. 41, 13486 (2015)

    Article  Google Scholar 

  10. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  ADS  Google Scholar 

  11. H.A. Ardakani, M. Alizadeh, R. Amini, M.R. Ghazanfari, Ceram. Int. 38, 4217 (2012)

    Article  Google Scholar 

  12. S. Vangchangyia, E. Swatsitang, P. Thongbai, S. Pinitsoontorn, T. Yamwong, S. Maensiri, V. Amornkitbamrung, P. Chindaprasirt, J. Am. Ceram. Soc. 95, 1497 (2012)

    Article  Google Scholar 

  13. M.M. Ahmad, Appl. Phys. Lett. 102, 23 (2013)

    Article  Google Scholar 

  14. J. Boonlakhorn, P. Kidkhunthod, P. Thongbai, S. Maensiri, Ceram. Int. 42, 8467 (2016)

    Article  Google Scholar 

  15. Xin Huang, Huaiwu Zhang, Jie Li, Yuanming Lai, J. Mater. Sci. Mater. Electron. 27, 11241 (2016)

    Article  Google Scholar 

  16. A. Nautiyal, C. Autret, C. Honstettre, S. De Almeida-Didry, M. El Amrani, S. Roger, B. Negulescu, A. Ruyter, J. Eur. Ceram. Soc. 36, 1391 (2016)

    Article  Google Scholar 

  17. J. Boonlakhorn, B. Putasaeng, P. Kidkhunthod, P. Thongbai, Mater. Des. 92, 494 (2016)

    Article  Google Scholar 

  18. D. Makovec, M. Drofenik, J. Baker, J. Am. Ceram. Soc. 86, 495 (2003)

    Article  Google Scholar 

  19. J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby, A.W. Sleight, Chem. Mater. 16, 5223 (2004)

    Article  Google Scholar 

  20. J. Jumpatam, B. Putasaeng, N. Chanlek, P. Kidkhunthod, P. Thongbai, S. Maensiri, P. Chindaprasirt, RSC Adv. 7, 4092 (2017)

    Article  Google Scholar 

  21. R.D. Shannon, Acta Cryst. 32, 751 (1976)

    Article  Google Scholar 

  22. R.Z. Xue, Z.P. Chen, H.Y. Dai, D.W. Liu, T. Li, G.Y. Zhao, Mater. Res. Bull. 66, 254 (2015)

    Article  Google Scholar 

  23. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313 (2012)

    Article  Google Scholar 

  24. P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, S. Maensiri, J. Appl. Phys. 112, 114 (2012)

    Article  Google Scholar 

  25. J. Liu, C.-G. Duan, W.-G. Yin, W.-N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144 (2004)

    Google Scholar 

  26. P. Leret, J.F. Fernandez, J. de Frutos, D. Fernandez-Hevia, J. Eur. Ceram. Soc. 27, 3901 (2007)

    Article  Google Scholar 

  27. P. Liu, Y. Lai, Y. Zeng, S. Wu, Z. Huang, J. Han, J. Alloys Compd. 650, 59 (2015)

    Article  Google Scholar 

  28. M.A. Sulaiman, S.D. Hutagalung, J.J. Mohamed, Z.A. Ahmad, M.F. Ain, B. Ismail, J. Alloys Compd. 509, 5701 (2011)

    Article  Google Scholar 

  29. M.M. Ahmad, H.M. Kotb, J. Mater. Sci. Mater. Electron. 26, 8939 (2015)

    Article  Google Scholar 

  30. N. Sangwong, W. Somphan, P. Thongbai, T. Yamwong, S. Meansiri, Appl. Phys. A Mater. 108, 385 (2012)

    Article  ADS  Google Scholar 

  31. S.I.R. Costa, M. Li, J.R. Frade, D.C. Sinclair, RSC Adv. 3, 7030 (2013)

    Article  Google Scholar 

  32. S. Sahoo, U. Dash, S.K.S. Parashar, S.M. Ali, J. Adv. Ceram. 2, 291 (2013)

    Article  Google Scholar 

  33. L. Yang, X. Chao, Z. Yang, N. Zhao, L. Wei, Z. Yang, Ceram. Int. 42, 2526 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support by the National Key Research and Development Plan (No. 2016YFA0300801), and by the development programmer of China (863 Program) (Grant No. 2015AA034102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Huang or Huaiwu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Zhang, H., Lai, Y. et al. The lowered dielectric loss tangent and grain boundary effects in fluorine-doped calcium copper titanate ceramics. Appl. Phys. A 123, 317 (2017). https://doi.org/10.1007/s00339-017-0947-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0947-9

Keywords

Navigation