Skip to main content
Log in

A quantitative model based on an experimental study for the magnetoelectric coupling at the interface of cobalt ferrite–barium titanate nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An experimental study has been proposed to quantitatively analyze the magnetoelectric coupling at the interface of magnetoelectric nanocomposites. For that, we present a quantitative model to switch the magnetoelectric response based on the relative constituent ratios and the interface interaction for a case study: magnetoelectric [(1 − x) CoFe2O4 (CFO) + (x) BaTiO3 (BTO): x = 0.0, 0.25, 0.50, 0.75, and 1.0) nanocomposites. The parameters used to develop this model are function of magnetization, polarization and their magnetoelectric coupling. The analysis showed that: (1) the direct–direct interaction acts a switching tool for the magnetoelectric coupling and (2) it is directly proportional to x-content for the whole matrix. Overall, this observation enables the control of the inter-conversion of energies stored in electric and magnetic fields for several electronic applications as magnetic field sensors and transducers.

Graphical Abstract

The difference number Nd or percentage DP, % between CFO and BTO nanoparticles is inversely proportional to x within [(1-x) CFO + (x) BTO: x = 0.0, 0.25, 0.5, 0.75, and 1] within the whole matrix, leading to that the direct-direct interaction at CFO-BTO interface gradually increases from \(\alpha_{E} = \frac{{{\text{d}}E}}{{{\text{d}}H}}\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.C. Verma, S.K. Tripathi, R.K. Kotnal, Magneto-electric/dielectric and fluorescence effects in multiferroic xBaTiO 3–(1 − x) ZnFe2O4 nanostructures. RSC Adv. 4, 60234–60242 (2014)

    Article  Google Scholar 

  2. H. Trivedi, V.V. Shvartsman, D.C. Lupascu, M.S.A. Medeiros, R.C. Pullar, A.L. Kholkin, P. Zelenovskiy, A. Sosnovskikh, V.Y. Shur, Local manifestations of a static magnetoelectric effect in nanostructured BaTiO3–BaFe12O9 composite multiferroics. Nanoscale 7, 4489–4496 (2015)

    Article  ADS  Google Scholar 

  3. L.-J. Zhai, H.-Y. Wang, Effects of magnetic correlation on the electric properties in multiferroic materials. J. Magn. Magn. Mater. 377, 121–125 (2015)

    Article  ADS  Google Scholar 

  4. R. Tadi, Y.-I. Kim, D. Sarkar, C. Kim, K.-S. Ryu, Magnetic and electrical properties of bulk BaTiO3 + MgFe2O4 composite. J. Magn. Magn. Mater. 323(5), 564–568 (2011)

    Article  ADS  Google Scholar 

  5. R. Grigalaitis, M.M.V. Petrović, J.D. Bobić, A. Dzunuzovic, R. Sobiestianskas, A. Brilingas, B.D. Stojanović, J. Banys, Dielectric and magnetic properties of BaTiO3 –NiFe2O4 multiferroic composites. Ceram. Int. 40, 6165–6170 (2014)

    Article  Google Scholar 

  6. G. Srinivasan, T. Rasmussen, R. Hayes, Magnetoelectric effects in ferrite-lead zirconate titanate layered composites: the influence of zinc substitution in ferrites. Phys. Rev. B 67, 014418 (2003)

    Article  ADS  Google Scholar 

  7. J. Ryu, A. Vazquez Carazo, K. Uchino, H. Kim, Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-ferrite particulate composites. J. Electroceramics 7, 17–24 (2001)

    Article  Google Scholar 

  8. B.K. Bammannavar, L.R. Naika, R.B. Pujar, B.K. Chougule, Resistivity dependent magnetoelectric characterization of Ni0.2Co0.8Fe2O4 + Ba0.8Pb0.2Zr0.8Ti0.2O3 composites. J. Alloys Compd. 477, L4–L7 (2009)

    Article  Google Scholar 

  9. J.V.D. Boomgaard, R.A.J. Born, A sintered magnetoelectric composite material BaTiO3–Ni(Co, Mn)Fe2O4. J. Mater. Sci. 13, 1538–1548 (1978)

    Article  ADS  Google Scholar 

  10. M.T. Buscaglia, V. Buscaglia, M. Viviani, J. Petzelt, M. Savinov, L. Mitoseriu, A. Testino, P. Nanni, C. Harnagea, Z. Zhao, M. Nygren, Ferroelectric properties of dense nanocrystalline BaTiO3 ceramics. Nanotechnology 15, 1113–1117 (2004)

    Article  ADS  Google Scholar 

  11. D. Sallagoity, C. Elissalde, J. Majimel, R. Berthelot, U.C. Chung, N. Penin, M. Maglione, V.A. Antohe, G. Hamoir, F. Abreu Araujo, L. Piraux, Synthesis and magnetic properties of Ni–BaTiO3 nanocable arrays within ordered anodic alumina templates. J. Mater. Chem. C 3, 107–111 (2015)

    Article  Google Scholar 

  12. A.O. Turky, M.M. Rashad, M. Bechelany, Tailoring optical and dielectric properties of Ba0.5Sr0.5TiO3 powders synthesized using citrate precursor route. Mater. Des. 90, 54–59 (2016)

    Article  Google Scholar 

  13. A.O. Turky, M.M. Rashad, A.T. Kandil, M. Bechelany, Tuning the optical, electrical and magnetic properties of Ba0.5Sr0.5Ti x M1−x O3 (BST) nanopowders. Phys. Chem. Chem. Phys. 17, 12553–12560 (2015)

    Article  Google Scholar 

  14. R. Sharma, P. Pahuja, R.P. Tandon, Structural, dielectric, ferromagnetic, ferroelectric and ac conductivity studies of the BaTiO3–CoFe1.8Zn0.2O4 multiferroic particulate composites. Ceram. Int. 40, 9027–9036 (2014)

    Article  Google Scholar 

  15. R.M. Mohamed, M.M. Rashad, F.A. Haraz, W. Sigmund, Magnetic nanocomposite based on titania–silica/cobalt ferrite for photocatalytic degradation of methylene blue dye. J. Magn. Magn. Mater. 322, 2058–2064 (2014)

    Article  ADS  Google Scholar 

  16. M.A. Ahmed, S.F. Mansour, M. Afifi, Structural, electric and magnetoelectric properties of Ni0.85Cu0.15Fe2O4/BiFe0.7Mn0.3O3 multiferroic nanocomposites. J. Alloys Compd. 578, 303–308 (2013)

    Article  Google Scholar 

  17. D. Vaishnav, R.K. Goyal, Thermal and dielectric properties of high performance polymer/ZnO nanocomposites. Mater. Sci. Eng. 64, 012016 (2014)

    Google Scholar 

  18. M.M. Rashad, M. Rasly, H.M. El-Sayed, A.A. Sattar, I.A. Ibrahim, Controlling the composition and the magnetic properties of hexagonal Co2Z ferrite powders synthesized using two different methods. Appl. Phys. A 112(4), 963–973 (2013)

    Article  ADS  Google Scholar 

  19. A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, Pittsburgh, 2006)

    Google Scholar 

  20. M. Rasly, M.M. Rashad, Structural and magnetic properties of Sn–Zn doped BaCo2Z-type hexaferrite powders prepared by citrate precursor method. J. Magn. Magn. Mater. 337, 58–64 (2013)

    Article  ADS  Google Scholar 

  21. L.M. Salah, M.M. Rashad, M. Haroun, M. Rasly, M.A. Soliman, Magnetically roll-oriented LaFeO3 nanospheres prepared using oxalic acid precursor method. J. Mater. Sci. Mater. Electron. 26, 1045–1052 (2015)

    Article  Google Scholar 

  22. E.V. Ramana, F. Figueiras, M.P.F. Graça, M.A. Valente, Observation of magnetoelectric coupling and local piezoresponse in modified (Na0.5Bi0.5)TiO3–BaTiO3–CoFe2O4 lead-free composites. Dalton Trans. 43, 9934–9943 (2014)

    Article  Google Scholar 

  23. S.N. Babu, K. Srinivas, T. Bhima, Sankaram, Studies on lead-free multiferroic magnetoelectric composites. J. Magn. Magn. Mater. 321(22), 3764–3770 (2009)

    Article  ADS  Google Scholar 

  24. S.C. Yang, C.W. Ahn, K.H. Cho, S. Priya, Self-bias response of lead-free (1 − x)[0.948 K0.5Na0.5NbO3–0.052 LiSbO3]–xNi0.8Zn0.2Fe2O4–Nickel magnetoelectric laminate composites. J. Am. Ceram. Soc. 94(11), 3889–3899 (2011)

    Article  Google Scholar 

  25. O.G. Udalov, N.M. Chtchelkatchev, I.S. Beloborodov, Coupling of ferroelectricity and ferromagnetism through Coulomb blockade in composite multiferroics. Phys. Rev. B 89, 174203 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rasly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasly, M., Afifi, M., Shalan, A.E. et al. A quantitative model based on an experimental study for the magnetoelectric coupling at the interface of cobalt ferrite–barium titanate nanocomposites. Appl. Phys. A 123, 331 (2017). https://doi.org/10.1007/s00339-017-0954-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0954-x

Keywords

Navigation