Skip to main content
Log in

Synthesis of Ag-loaded SrTiO3/TiO2 heterostructure nanotube arrays for enhanced photocatalytic performances

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the effect of loading Ag nanoparticles on the photocatalytic activity of SrTiO3/TiO2 nanotube arrays (TNTAs) was investigated. TNTAs were partially transformed to SrTiO3 through a hydrothermal treatment, which could preserve the tubular structure of TNTAs, and then, Ag nanoparticles were well deposited on the surface of SrTiO3/TNTAs heterostructure by a chemical reduction process. Compared to the TNTAs sample, the Ag-loaded SrTiO3/TNTAs sample showed significantly enhanced photocatalytic activities for photodegradation of rhodamine B. The enhanced photocatalytic activity of Ag-loaded SrTiO3/TNTAs could be attributed to the increased optical absorption as well as the efficient charge transfer and separation of photogenerated electron–hole pairs induced by the SrTiO3/TNTAs heterojunction and the Schottky barrier between metallic Ag and SrTiO3/TNTAs. On the basis of the trapping experiments, the possible photocatalytic mechanism was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  ADS  Google Scholar 

  2. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res. 44, 2997–3027 (2010)

    Article  Google Scholar 

  3. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C Photochem. Rev. 13, 169–189 (2012)

    Article  Google Scholar 

  4. P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904–2939 (2011)

    Article  Google Scholar 

  5. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011–2075 (2006)

    Article  Google Scholar 

  6. A.E. Mohamed, S. Rohani, Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy Environ. Sci. 4, 1065–1086 (2011)

    Article  Google Scholar 

  7. M.D. Ye, J.J. Gong, Y.K. Lai, C.J. Lin, Z.Q. Lin, High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J. Am. Chem. Soc. 134, 15720–15723 (2012)

    Article  Google Scholar 

  8. Q.L. Huang, T. Gao, F. Niu, D. Chen, Z. Chen, L.S. Qin, X.G. Sun, Y.X. Huang, K.Y. Shu, Preparation and enhanced visible-light driven photocatalytic properties of Au-loaded TiO2 nanotube arrays. Superlattice Microstruct. 75, 890–900 (2014)

    Article  ADS  Google Scholar 

  9. F.X. Xiao, Self-assembly preparation of gold nanoparticles-TiO2 nanotube arrays binary hybrid nanocomposites for photocatalytic applications. J. Mater. Chem. 22, 7819–7830 (2012)

    Article  MathSciNet  Google Scholar 

  10. S.G. Chen, M. Paulose, C. Ruan, G.K. Mor, O.K. Varghese, D. Kouzoudis, C.A. Grimes, Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: preparation, characterization and application to photoelectrochemical cells. J. Photochem. Photobiol. A: Chem. 177, 177–184 (2006)

    Article  Google Scholar 

  11. Y.L. Xie, Z.X. Li, Z.G. Xu, H.L. Zhang, Preparation of coaxial TiO2/ZnO nanotube arrays for high-efficiency photo-energy conversion applications. Electrochem. Commun. 13, 788–791 (2011)

    Article  Google Scholar 

  12. Z.C. Xu, W.Y. Yang, Q. Li, S. Gao, J.K. Shang, Passivated n-p co-doping of niobium and nitrogen into self-organized TiO2 nanotube arrays for enhanced visible light photocatalytic performance. Appl. Catal. B Environ. 144, 343–352 (2014)

    Article  Google Scholar 

  13. Y. Yang, K. Lee, Y. Kado, P. Schmuki, Nb-doping of TiO2/SrTiO3 nanotubular heterostructures for enhanced photocatalytic water splitting. Electrochem. Commun. 17, 56–59 (2012)

    Article  Google Scholar 

  14. F.X. Xiao, Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. ACS Appl. Mater. Interfaces. 4, 7054–7062 (2012)

    MathSciNet  Google Scholar 

  15. F.X. Xiao, J.W. Miao, H.Y. Wang, B. Liu, Self-assembly of hierarchically ordered CdS quantum dots-TiO2 nanotube array heterostructures as efficient visible light photocatalysts for photoredox applications. J. Mater. Chem. A 1, 12229–12238 (2013)

    Article  Google Scholar 

  16. Y. Liu, L. Xie, Y. Li, R. Yang, J.L. Qu, Y.Q. Li, X.G. Li, Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation. J. Power Sources 183, 701–707 (2008)

    Article  ADS  Google Scholar 

  17. H.Q. Zhan, Z.G. Chen, J.L. Zhuang, X.F. Yang, Q.L. Wu, X.P. Jiang, C.L. Liang, M.M. Wu, J. Zou, Correlation between multiple growth stages and photocatalysis of SrTiO3 nanocrystals. J. Phys. Chem. C 119, 3530–3537 (2015)

    Article  Google Scholar 

  18. S.H. Wang, L.J. Shen, Guo, SrTiO3 single crystals enclosed with high-indexed 023 facets and 001 facets for photocatalytic hydrogen and oxygen evolution. Appl. Catal. B Environ. 166, 320–326 (2015)

    Article  Google Scholar 

  19. J.W. Ng, S.P. Xu, X.W. Zhang, H.Y. Yang, D.D. Sun, Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting. Adv. Funct. Mater. 20, 4287–4294 (2010)

    Article  Google Scholar 

  20. J. Zhang, J.H. Bang, C.C. Tang, P.V. Kamat, Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4, 387–395 (2010)

    Article  Google Scholar 

  21. C.W. Kim, M.J. Choi, Y.S. Kang, Fabrication of SrTiO3-TiO2 heterojunction photoanode with enlarged pore diameter for dye-sensitized solar cells. J. Mater. Chem. A 1, 11820–11827 (2013)

    Article  Google Scholar 

  22. J.R. Huang, X. Tan, T. Yu, L. Zhao, S. Xue, W.L. Hu, Hetero-structured TiO2/SrTiO3 nanotube array film with highly reactive anatase TiO2 {001} facets. J. Mater. Chem. A 2, 9975–9981 (2014)

    Article  Google Scholar 

  23. S.K. Mohapatra, N. Kondamudi, S. Banerjee, M. Misra, Functionalization of self-organized TiO2 nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination. Langmuir 24, 11276–11281 (2008)

    Article  Google Scholar 

  24. W.B. Hou, S.B. Cronin, A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612–1619 (2013)

    Article  Google Scholar 

  25. Q. Zhang, Y. Huang, L.F. Xu, J.J. Cao, W.K. Ho, S.C. Lee, Visible-light-active plasmonic Ag-SrTiO3 nanocomposites for the degradation of NO in air with high selectivity. ACS Appl. Mater. Interfaces. 6, 4165–4174 (2016)

    Article  Google Scholar 

  26. L. Zhang, N.Q. Pan, S.W. Lin, Influence of Pt deposition on water-splitting hydrogen generation by highly-ordered TiO2 nanotube arrays. Int. J. Hydrogen Energy 39, 13474–13480 (2014)

    Article  Google Scholar 

  27. X.M. Zhang, K.F. Huo, L.S. Hu, Z.W. Wu, P.K. Chu, Synthesis and photocatalytic activity of highly ordered TiO2 and SrTiO3/TiO2 nanotube arrays on Ti substrates. J. Am. Ceram. Soc. 93, 2771–2778 (2010)

    Article  Google Scholar 

  28. L. Wang, Z.J. Wang, D.H. Wang, X.C. Shi, H. Song, X.Q. Gao, The photocatalysis and mechanism of new SrTiO3/TiO2. Solid State Sci. 31, 85–90 (2014)

    Article  ADS  Google Scholar 

  29. Q.Y. Wang, X.C. Yang, D. Liu, J.F. Zhao, Fabrication, characterization and photocatalytic properties of Ag nanoparticles modified TiO2 NTs. J. Alloys. Compd. 527, 106–111 (2012)

    Article  Google Scholar 

  30. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627–637 (1966)

    Article  Google Scholar 

  31. J. Zhou, L. Yin, K. Zha, H.R. Li, Z.Y. Liu, J.X. Wang, K. Duan, B. Feng, Hierarchical fabrication of heterojunctioned SrTiO3/TiO2 nanotubes on 3D microporous Ti substrate with enhanced photocatalytic activity and adhesive strength. Appl. Surf. Sci. 367, 118–125 (2016)

    Article  ADS  Google Scholar 

  32. J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang, Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808–3816 (2002)

    Article  Google Scholar 

  33. C.C. Chen, W.H. Ma, J.C. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 39, 4206–4219 (2010)

    Article  Google Scholar 

  34. C. Minero, G. Mariella, V. Maurino, D. Vione, E. Pelizzetti, Photocatalytic transformation of organic compounds in the presence of inorganic ions. 2. Competitive reactions of phenol and alcohols on a titanium dioxide-fluoride system. Langmuir 16, 8964–8972 (2000)

    Article  Google Scholar 

  35. Y.L. Tian, B.B. Chang, J.L. Lu, J. Fu, F.N. Xi, X.P. Dong, Hydrothermal synthesis of graphitic carbon nitride-Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. ACS Appl. Mater. Interfaces 5, 7079–7085 (2013)

    Article  Google Scholar 

  36. L.E. Manring, M.K. Kramer, C.S. Foote, Interception of O2 by benzoquinone in cyanoaromatic-sensitized photooxygenations. Tetrahedron Lett. 25, 2523–2526 (1984)

    Article  Google Scholar 

  37. S.W. Hu, L.W. Yang, Y. Tian, X.L. Wei, J.W. Ding, J.X. Zhong, P.K. Chu, Simultaneous nanostructure and heterojunction engineering of graphitic carbon nitride via in situ Ag doping for enhanced photoelectrochemical activity. Appl. Catal. B Environ. 163, 611–622 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 51372237, 51572250), Zhejiang Provincial Natural Science Foundation of China (No. LY17E020009), and Research Project of Public Welfare Quality Testing Industry of China (No. 201510072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da Chen or Laishun Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Chen, D., Zhan, X. et al. Synthesis of Ag-loaded SrTiO3/TiO2 heterostructure nanotube arrays for enhanced photocatalytic performances. Appl. Phys. A 123, 399 (2017). https://doi.org/10.1007/s00339-017-1014-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1014-2

Keywords

Navigation