Skip to main content
Log in

Gate misalignment effects on analog/RF performance of charge plasma-based doping-less tunnel FET

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, gate misalignment effect on charge plasma-based doping-less tunnel FET (DLTFET) is demonstrated for the first time. The effects of bottom gate misalignment on either towards source (GMAS) or towards drain (GMAD) are then compared with the conventional doped TFET (DGTFET). This paper also discusses the effect of misalignment on the bases of different analog/RF parameters such as transconductance (g m ), output conductance (g d ), intrinsic gain (A V ), total gate capacitance (C gg ), and cut-off frequency (f T ). When bottom gate is misaligned towards source, DLTFET provides a better performance than DGTFET and shows the best results when the device is 50% misaligned. While gate misalignment towards drain, both devices show similar performance and degrade with the increase in misalignment. The DLTFET is found to have a better tolerance to the different misalignment configurations than DGTFET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S.H. Oh, D. Monroe, J.M. Hergenrother, Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs. IEEE Electron Device Lett. 21(9), 445–447 (2000)

    Article  ADS  Google Scholar 

  2. J.P. Colinge, Multiple-gate soi mosfets. Solid-State Electron. 48(6), 897–905 (2004)

    Article  ADS  Google Scholar 

  3. W.Y. Choi, B.G. Park, J.D. Lee, T.J.K. Liu, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)

    Article  ADS  Google Scholar 

  4. A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011)

    Article  ADS  Google Scholar 

  5. B. Rajasekharan, R.J.E. Hueting, C. Salm, T. van Hemert, R.A.M. Wolters, J. Schmitz, Fabrication and characterization of the charge-plasma diode. IEEE Electron Device Lett. 31(6), 528–530 (2010)

    Article  ADS  Google Scholar 

  6. Kumar M. Jagadesh, Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)

    Article  Google Scholar 

  7. S. Anand, S. Intekhab Amin, R.K. Sarin, Analog performance investigation of dual electrode based doping-less tunnel FET. J Comput Electron 15(1), 94–103 (2016)

    Article  Google Scholar 

  8. H-SP Wong, K.K. Chan, Y. Taur, Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel, in Electron Devices Meeting, 1997. IEDM’97. Technical Digest., International, pp. 427–430, (1997)

  9. C. Yin, P.C.H. Chan, Investigation of the source/drain asymmetric effects due to gate misalignment in planar double-gate MOSFETs. IEEE Trans. Electron Devices 52(1), 85–90 (2005)

    Article  ADS  Google Scholar 

  10. H.Y. Wong, K. Shin, M. Chan: The gate misalignment effects of the sub-threshold characteristics of sub-100 nm DG-MOSFETs, in Proceedings of the IEDM Technical Digest, pp. 91–94 (2002)

  11. J. Widiez, J. Lolivier, M. Vinet, T. Poiroux, B. Previtali, F. Dauge, M. Mouis, S. Deleonibus, Experimental evaluation of gate architecture influence on DG SOI MOSFETs performance. IEEE Trans. Electron Devices 52(8), 1772–1779 (2005)

    Article  ADS  Google Scholar 

  12. A. Kranti, G.A. Armstrong, High tolerance to gate misalignment in low voltage gate-underlap double gate MOSFETs. IEEE Electron Device Lett. 29(5), 503–505 (2008)

    Article  ADS  Google Scholar 

  13. S.I. Amin, R.K. Sarin, Analog performance investigation of misaligned double gate junctionless transistor. J. Comput. Electron. 14(3), 675–685 (2015)

    Article  Google Scholar 

  14. International technology roadmap for semiconductors (2013). http://www.itrs.net (Online)

  15. S. Anand, R.K. Sarin, An analysis on ambipolar reduction techniques for charge plasma based tunnel FETs. J. Nanoelectron. Optoelectron. 11(4), 543–550 (2016)

    Article  Google Scholar 

  16. ATLAS device simulation software (Silvaco Int., Santa Clara, 2012)

  17. M. Luisier, G. Klimeck, Simulation of nanowire tunneling transistors: from the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling. J. Appl. Phys. 107(8), 084507 (2010)

    Article  ADS  Google Scholar 

  18. D. Querlioz, J. Saint-Martin, K. Huet, A. Bournel, V. Aubry-Fortuna, C. Chassat, S. Galdin-Retailleau, P. Dollfus, On the ability of the particle Monte Carlo technique to include quantum effects in nano-MOSFET simulation. Electron IEEE Trans. Devices 54(9), 2232–2242 (2007)

    Article  ADS  Google Scholar 

  19. K. Boucart, A.M. Ionescu, Length scaling of the double gate tunnel FET with a high-k gate dielectric. Solid-State Electron. 21(11), 1500–1507 (2007)

    Article  ADS  Google Scholar 

  20. G. Singh, S.I. Amin, S. Anand, R.K. Sarin, Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation. Superlattices Microstruct. 92, 143–156 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunny Anand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, S., Sarin, R.K. Gate misalignment effects on analog/RF performance of charge plasma-based doping-less tunnel FET. Appl. Phys. A 123, 413 (2017). https://doi.org/10.1007/s00339-017-1029-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1029-8

Keywords

Navigation