Skip to main content
Log in

The effect of Cu on the properties of CdO/Cu/CdO multilayer films for transparent conductive electrode applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Transparent conductive CdO/Cu/CdO multilayer films were prepared using rf plasma magnetron sputtering and electron beam evaporation techniques. The CdO layers were prepared using rf plasma magnetron sputtering, while the Cu interlayer was prepared by electron beam evaporation technique. The Cu layer thickness was varied between 1 and 10 nm. The structural and optical properties as well as the sheet resistance of the multilayer films were studied. X-ray diffraction measurements revealed the presence of cubic CdO structure and the Cu peak was only observed for the multilayers prepared with 10 nm of Cu. It has been observed that the Cu interlayer thickness has a great influence on the optical and electrical properties of the multilayers. The transmittance of the multilayer films decreased while the reflectance increased with increasing Cu interlayer thickness. The refractive index and the extinction coefficient of the multilayer films were calculated. The estimated optical band gap values were found to be decreased from 2.75 ± 0.02 to 2.40 ± 0.02 eV as the Cu interlayer thickness increased from 1 to 10 nm. The sheet resistance was sensitive to the Cu interlayer thickness and it decreased with increasing Cu interlayer thickness. A sheet resistSSance of 21.7 Ω/sq, an average transmittance (between 700 and 1000 nm) of 77%, and an optical band gap of 2.5 ± 0.02 eV were estimated for the multilayer film with 2 nm Cu layer. The multilayer film with 2 nm Cu layer has the highest figure of merit value of 3.2 × 10−3 Ω−1. This indicates that the properties of this multilayer film are suitable for transparent conductive electrode applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.-Y. Tsai, O. Bierwagen, J.S. Speck, Thin Solid Films 605, 186 (2016)

    Article  ADS  Google Scholar 

  2. F.-H. Wang, C.-L. Chang, Appl. Surf. Sci. 370, 83 (2016)

    Article  ADS  Google Scholar 

  3. U. Riaz, S.M. Ashraf, J. Kashyap, Mater. Res. Bull. 71, 75 (2015)

    Article  Google Scholar 

  4. D.R. Sahu, J.-L. Huang, Appl. Surf. Sci. 253, 827 (2006)

    Article  ADS  Google Scholar 

  5. S.H. Mohamed, J. Phys. Chem. Solids 69, 2378 (2008)

    Article  ADS  Google Scholar 

  6. A. Bou, P. Torchio, D. Barakel, P.-Y. Thoulon, M. Ricci, Thin Solid Films 617, 86 (2016)

    Article  ADS  Google Scholar 

  7. X. Ding, J. Yan, T. Li, L. Zhang, Appl. Surf. Sci. 258, 3082 (2012)

    Article  ADS  Google Scholar 

  8. S. Yu, L. Li, D. Xu, H. Dong, Y. Jin, Thin Solid Films 562, 501 (2014)

    Article  ADS  Google Scholar 

  9. V. Sharma, S. Singh, K. Asokan, K. Sachdev, Nucl. Instrum. Methods Phys. Res. B 379, 141 (2016)

    Article  ADS  Google Scholar 

  10. S.-W. Liu, T.-H. Su, P.-C. Chang, T.-H. Yeh, Y.-Z. Li, L.-J. Huang, Y.-H. Chen, Ch-F Lin, Org. Electron. 31, 240 (2016)

    Article  Google Scholar 

  11. C. Guillén, J. Herrero, Thin Solid Films 520, 1 (2011)

    Article  ADS  Google Scholar 

  12. E.N. Cho, P. Moon, C.E. Kim, I. Yun, Expert Syst. Appl. 39, 8885 (2012)

    Article  Google Scholar 

  13. M.F. Al-Kuhaili, M.A. Al-Maghrabi, S.M.A. Durrani, I.A. Bakhtiari, J. Phys. D 41, 215302 (2008)

    Article  ADS  Google Scholar 

  14. I. Seo, S.O. Ryu, J. Korean Phys. Soc. 66, 790 (2015)

    Article  ADS  Google Scholar 

  15. A.A. Dakhel, H. Hamad, J. Solid State Chem. 208, 14 (2013)

    Article  ADS  Google Scholar 

  16. K. Sankarasubramanian, P. Soundarrajan, K. Sethuraman, K. Ramamurthi, Mater. Sci. Semicond. Proc. 40, 879 (2015)

    Article  Google Scholar 

  17. H. Colak, O. Turkoglu, Mat. Sci. Semicond. Proc. 16, 712 (2013)

    Article  Google Scholar 

  18. Y. Zhu, R.J. Mendelsberg, J. Zhu, J. Han, A. Anders, Appl. Surf. Sci. 265, 738 (2013)

    Article  ADS  Google Scholar 

  19. T. Terasako, K. Ohmae, M. Yamane, S. Shirakata, Thin Solid Films 572, 20 (2014)

    Article  ADS  Google Scholar 

  20. M. Zaien, N.M. Ahmed, Z. Hassan, Mater. Lett. 105, 84 (2013)

    Article  Google Scholar 

  21. Y. Yoshino, K. Inoue, M. Takeuchi, T. Makino, Y. Katayama, T. Hata, Vacuum 59, 403 (2000)

    Article  Google Scholar 

  22. Z. Zhao, J. Sun, G. Zhang, L. Bai, J. Alloys Compd. 652, 307 (2015)

    Article  Google Scholar 

  23. E. Nichelatti, M. Montecchi, R.M. Montereali, J. Non-Cryst, Solids 355, 1115–1118 (2009)

    Google Scholar 

  24. O.S. Heavens, Optical Properties of Thin Films, Dover, New York, 1965 (Thin Film Phys., Methuen, London, 1970)

    Google Scholar 

  25. N. El-Kadry, A. Ashour, M.F. Ahmed, K. Abdel-Hady, Thin Solid Films 259, 194 (1995)

    Article  ADS  Google Scholar 

  26. N. El-Kabnaya, E.R. Shaabanb, N. Afifya, A.M. Abou-sehly, Phys. B 403, 31 (2008)

    Article  ADS  Google Scholar 

  27. F.A. Jenkins, H.E. White, Fundamentals of Optics (McGraw-Hill, NewYork, 1957)

    MATH  Google Scholar 

  28. K. Gurumurugan, D. Mangalaraj, S.K. Narayandass, K. Sekar, C.P. Girija, Vallabhan. Semicond. Sci. Technol. 9, 1827 (1994)

    Article  ADS  Google Scholar 

  29. K. Manickathai, S.K. Viswanathan, M. Alagar, Indian J. Pure Appl. Phys. 46, 561 (2008)

    Google Scholar 

  30. M. Thambidurai, N. Muthukumarasamy, A. Ranjitha, D. Velauthapillai, Superlattices Microst. 86, 559 (2015)

    Article  ADS  Google Scholar 

  31. H. Han, N.D. Theodore, T.L. Alford, J. Appl. Phys. 103, 013708 (2008)

    Article  ADS  Google Scholar 

  32. A. Indluru, T.L. Alford, J. Appl. Phys. 105, 123528 (2009)

    Article  ADS  Google Scholar 

  33. Y. Mouchaal, G. Louarn, A. Khelil, M. Morsli, N. Stephant, A. Bou, T. Abachi, L. Cattin, M. Makha, P. Torchio, J.C. Bernede, Vacuum 111, 32 (2015)

    Article  ADS  Google Scholar 

  34. R.K. Gupta, F. Yakuphanoglu, F.M. Amanullah, Phys. E 43, 1666 (2011)

    Article  Google Scholar 

  35. J.C. Tauc, Optical Properties of Solids (North-Holland, Amsterdam, 1972)

    Google Scholar 

  36. J.C. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974)

    Book  Google Scholar 

  37. V. Srikant, D.R. Clarke, J. Appl. Phys. 81, 6357 (1997)

    Article  ADS  Google Scholar 

  38. A. Dhar, T.L. Alford, ECS Solid State Lett. 3, N33 (2014)

    Article  Google Scholar 

  39. G. Haacke, J. Appl. Phys. 47, 4086 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raaif, M., Mohamed, S.H. The effect of Cu on the properties of CdO/Cu/CdO multilayer films for transparent conductive electrode applications. Appl. Phys. A 123, 441 (2017). https://doi.org/10.1007/s00339-017-1050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1050-y

Navigation