Skip to main content
Log in

Determination of UV–visible–NIR absorption coefficient of graphite bulk using direct and indirect methods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Absorption coefficient of graphite bulk pressed from 1 to 5 μm-sized crystalline grains was measured in UV–Vis–NIR range with three different methods: (i) determination of pulsed laser ablation rate as the function of laser fluence for different wavelengths (248, 337, 532, and 1064 nm, respectively); (ii) production of aerosol particles by UV laser ablation of the bulk graphite in inert atmosphere and determination of the mass-specific absorption coefficient with a four-wavelength (266, 355, 532, and 1064 nm, respectively) photoacoustic spectrometer, and (iii) spectroscopic ellipsometry in 250–1000 nm range. Taking into account the wide range of the absorption coefficients of different carbon structures, an overall relatively good agreement was observed for the three methods. The ellipsometric results fit well with the ablation rate measurement, and the data obtained with photoacoustic method are also similar in the UV and NIR region; however, the values were somewhat higher in visible and near-UV range. Taking into account the limitations of the methods, they can be promising candidates for the determination of absorption coefficient when the samples are strongly scattering and there is no possibility to perform transmissivity measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.G. Hecht, J. Res. NBS A Phys. Chem. 80A, 567 (1976)

    Article  Google Scholar 

  2. P.D. Johnson, J. Opt. Soc. Am. 42, 978 (1952)

    Article  ADS  Google Scholar 

  3. J.T. Mc-Cartney, S. Ergun, U.S. Bur, Mines Bull. 641, 1 (1967)

    Google Scholar 

  4. N. Laidani, R. Bartali, G. Gottardi, M. Anderle, P. Cheyssac, J. Phys.-Condens. Mater. (2008). doi:10.1088/0953-8984/20/01/015216

    Google Scholar 

  5. T. Kaplas, L. Karvonen, J. Rönn, M.R. Saleem, S. Kujala, S. Honkanen, Y. Svirko, Opt. Mater. Express 2, 1822 (2012)

    Article  Google Scholar 

  6. S. Logothetidis, Diam. Relat. Mater. 12, 141 (2003)

    Article  ADS  Google Scholar 

  7. P.K. Chu, L. Li, Mater. Chem. Phys. 96, 253 (2006)

    Article  Google Scholar 

  8. T. Lippert, Adv. Polym. Sci. 168, 51 (2004)

    Article  Google Scholar 

  9. J. Hoffman, J. Chrzanowska, S. Kucharski, T. Moscicki, I.N. Mihailescu, C. Ristoscu, Z. Szymanski, Appl. Phys. A 117, 395 (2014)

    Article  ADS  Google Scholar 

  10. H. Moosmüller, R.K. Chakrabartry, K.M. Ehlers, W.P. Arnott, Atmos. Chem. Phys. 11, 1217 (2011)

    Article  ADS  Google Scholar 

  11. W.P. Arnott, K. Hamasha, H. Moosmüller, P.J. Sheridan, J.A. Ogren, Aerosol. Sci. Tech. 39, 17 (2005)

    Article  ADS  Google Scholar 

  12. B.A. Flowers, M.K. Dubey, C. Mazzoleni, E.A. Stone, J.J. Schauer, S.-W. Kim, Atmos. Chem. Phys. 10, 10387 (2010)

    Article  ADS  Google Scholar 

  13. N. Utry, T. Ajtai, Á. Filep, M. Pintér, Z. Török, Z. Bozóki, G. Szabó, Atmos. Environ. 91, 525 (2014)

    Article  Google Scholar 

  14. T. Ajtai, Á. Filep, M. Schnaiter, C. Linke, M. Vragel, Z. Bozóki, G. Szabó, T. Leisner, J. Aerosol. Sci. 41, 1020 (2010)

    Article  ADS  Google Scholar 

  15. T. Ajtai, Á. Filep, G. Kecskeméti, B. Hopp, Z. Bozóki, G. Szabó, Appl. Phys. A 103, 1165 (2011)

  16. Z. Pápa, J. Budai, I. Hanyecz, J. Csontos, Z. Toth, Thin Solid Films 571, 562 (2014)

    Article  ADS  Google Scholar 

  17. M. Ben-David, L. Engel, Y. Shacham-Diamand, Microelectron. Eng. 171, 37 (2017)

    Article  Google Scholar 

  18. T. Ajtai, N. Utry, M. Pintér, G. Kiss-Albert, R. Puskás, Cs Tápai, G. Kecskeméti, T. Smausz, B. Hopp, Z. Bozóki, Z. Kónya, G. Szabó, Atmos. Meas. Tech. 8, 1207 (2015)

    Article  Google Scholar 

  19. H. Fujiwara, Spectroscopic Ellipsometry, Principles and Applications (Wiley, New York, 2007), pp. 158–176

    Book  Google Scholar 

  20. H.G. Tompkins, J.N. Hilfiker, Spectroscopic Ellipsometry (Momentum Press, LLC, New York, 2016)

    Google Scholar 

  21. H. Moosmüller, R.K. Chakrabarty, W.P. Arnott, J. Quant. Spectrosc. Radiat. 110, 844 (2009)

    Article  ADS  Google Scholar 

  22. K. Park, D.B. Kittleson, P.H. McMurry, Aerosol Sci. Tech. 38, 881 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the GINOP-2.3.2-15-2016-00036 and by the European Union, co-financed by the European Social Fund EFOP-3.6.1-16-2016-00014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Smausz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smausz, T., Kondász, B., Gera, T. et al. Determination of UV–visible–NIR absorption coefficient of graphite bulk using direct and indirect methods. Appl. Phys. A 123, 633 (2017). https://doi.org/10.1007/s00339-017-1249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1249-y

Navigation