Skip to main content
Log in

Structural, magnetic, and electrical property of nanocrystalline perovskite structure of iron manganite (FeMnO3)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, nanostructure FeMnO3 perovskite material was synthesis by sol–gel auto combustion method using the glycine as a chelating agent for the first time in the literature. The synthesized materials were investigated structural, electrical, and magnetic properties by various characterization techniques. The X-ray diffraction reveals that the density and specific surface value are 2.54 g/cm3 and 1.468 m2/g, respectively. FE-SEM investigated surface morphology in the nanoscale region. The FeMnO3 material is existing antiferromagnetism at room temperature. Electrical property such as dielectric constant, tangent loss, and impedance spectrum, Nyquist plot with an equivalent circuit, AC conductivity, and electric modulus was analysed. The real part of permittivity, dielectric tangent loss with varying with temperature shows that the behaviour of Maxwell–Wagner relaxation in the FeMnO3 might be observed oxygen vacancy. The Nyquist plot gives more information-related electrical conduction process and individual contribution of grain and grain boundaries. The resistance (Ω) and capacitance (farads) values are varied with increasing temperature. An electric modulus value is varied under suppression electrode polarization and shows the effect of bulk and grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Rayaproln, S.D. Kaushik, Magnetic and magnetocaloric properties of FeMnO3. J. Ceram. Int. 41, 9567–9571 (2015)

    Article  Google Scholar 

  2. H. Bin, Z. Yao, S. Zhu, C. Zhu, H. Pan, Z. Chen, C. Wolverton, D. Zhang, A high-performance anode material based on FeMnO3/grapheme composite. J. Alloys Compd. 695, 1223–1230 (2017)

    Article  Google Scholar 

  3. N. Rezlescua, E. Rezlescua, P.D. Popaa, C. Dorofteia, M. Ignat, Some nanograined ferrites and perovskites for catalytic combustionof acetone at low temperature. J. Ceram. Int. 41, 4430–4437 (2015)

    Article  Google Scholar 

  4. D. Seifu, A. Kebede, F.W. Oliver, E. Homan, E. Hammond, C. Wynter, A. Aning, L. Takacs, I.-L. Siu, J.C. Walker, G. Tessema, M.S. Seehra, Evidence of ferromagnetic ordering in FeMnO3 produced by mechanical alloying. J. Magn. Magn. Mater. 212, 178–182 (2000)

    Article  ADS  Google Scholar 

  5. C. Doroftei, P.D. Popa, E. Rezlescua, N. Rezlescu, Structural and catalytic characterization of nano structured iron manganite. J Compos. Part B 67, 179–182 (2014)

    Article  Google Scholar 

  6. J. Liu, J. Xiao, X. Zeng, P. Dong, J. Zhao, Y. Zhang, X. Li, Combustion synthesized macroporous structure MFe2O4 (M = Zn, Co) as anode materials with excellent electrochemical performance for lithium ion batteries. J. Alloys Compd. 699, 401–407 (2017)

    Article  Google Scholar 

  7. V.M. Gaikwad, S.A. Acharya, Perovskite-spinel composite approach to modify room temperature structural, magnetic and dielectric behaviour of BiFeO3. J. Alloys Compd. 695, 3689–3703 (2017)

    Article  Google Scholar 

  8. K.P. Shinde, N.D. Thorat, S.S. Pawar, S.H. Pawar, Combustion synthesis and characteriz ation of perovskite La0.9Sr0.1MnO3. J Mater. Chem. Phys. 134, 881–885 (2012)

    Article  Google Scholar 

  9. S. Husain, I. Bhat, W. Khan, L. Al-Khataby, Structural and dielectric properties of La0.8Te0.2MnO3.. J. Solid State Commun. 157, 29–33 (2013)

    Article  ADS  Google Scholar 

  10. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V.N. Singh, Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014)

    Article  ADS  Google Scholar 

  11. L.S. Lobo, A.R. Kumar, Investigation of structural and electrical properties of ZnMn2O4 synthesized by sol–gel method. J Mater. Sci. Mater. Electron. 27, 7398–7406 (2016)

    Article  Google Scholar 

  12. V.S. Sawant, A.A. Bagade, K.Y. Rajpure, Studies on structural and electrical properties of Li0.5–0.5xCoxFe2.5–0.5xO4 (0 < x < 0.6) spinel ferrite. J. Phys. B 474, 47–52 (2015)

    Article  Google Scholar 

  13. G. Kumar, S. Sharma, R.K. Kotnala, J. Shah, S.E. Shirsath, K.M. Batoo, M. Singh, Electric, dielectric and ac electrical conductivity study of nanocrystalline cobalt substituted Mg–Mn ferrites synthesized via solution combustion technique. J. Mol. Struct. 1051, 336–344 (2013)

    Article  ADS  Google Scholar 

  14. J.A. Khan, M. Qasim, B.R. Singh, S. Singh, M. Shoeb, W. Khan, D. Das, A.H. Naqvi, Synthesis and characterization of structural, optical,thermal and dielectric properties of polyaniline/CoFe2O4 nanocomposites with special reference to photocatalytic activity. J. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 109, 313–321 (2013)

    Article  ADS  Google Scholar 

  15. A. Shanmugavani, R.K. Selvan, S. Layek, L. Vasylechko, C. Sanjeeviraja, Influence of pH and fuels on the combustion synthesis, structural, morphological, electrical and magnetic properties of CoFe2O4 nanoparticles. J Mater. Res. Bull. 71, 122–132 (2015)

    Article  Google Scholar 

  16. Z. Lazarevic, C. Jovalekic, D.L. Sekulic, A. Milutinovic, S. Balos, M. Slankamenac, N.Z. Romcevic, Structural, electrical and dielectric properties of spinel nickel ferrite prepared by of mechanochemical synthesis. J Mater. Res. Bull. 48, 4368–4378 (2013)

    Article  Google Scholar 

  17. S. Gowreesan, A.R. Kumar, Effects of Mg2+ ion substitution on the structural and electric studies of spinel structure of Co1 – xMgxFe2O4. J Mater. Sci. Mater. Electron. 28, 4553–4564 (2017)

    Article  Google Scholar 

  18. C. Sujatha, K.V. Reddy, K.S. Babu, A.R.C. Reddy, M.B. Suresh, K.H. Rao, Effect of co-substitution of Mg and Zn on electromagnetic properties of NiCuZn ferrites. J. Phys. Chem. Solids 74, 917–923 (2013)

    Article  ADS  Google Scholar 

  19. M. Gerst, E. Navickas, M. Leitgeb, G. Friedbacher, F. Kubel, J. Fleig, The grain and grain boundary impedance of sol–gel prepared thin layers of yttria stabilized zirconia (YSZ). J Solid State Ionics 225, 732–736 (2012)

    Article  Google Scholar 

  20. L.S. Lobo, S. Kalainathan, A.R. Kumar, Investigation of electrical studies of spinel FeCo2O4 synthesized by sol-gel method. J Superlattices Microstruct. 88, 116–126 (2015)

    Article  ADS  Google Scholar 

  21. K.M. Shaju, G.V. Subba Rao, B.V.R. Chowdari, Li-ion kinetic studies on spinel cathodes, Li(M1/6Mn11/6)O4(M = Mn, Co, Co, Al) by GITT and EIS. J Mater. Chem. 13, 106–113 (2003)

    Article  Google Scholar 

  22. S.F. Mansour, M.A. Abdo, Electrical modulus and dielectric behaviour of Cr3+ substituted Mg–Zn nanoferrites. J. Magn. Magn. Mater. 428, 300–305 (2017)

    Article  ADS  Google Scholar 

  23. M. Kaiser, Magnetic and electric modulus properties of In substituted Mg–Mn–Cu ferrites. J. Mater. Res. Bull. 73, 452–458 (2016)

    Article  ADS  Google Scholar 

  24. M. Ram, S. Chakrabarti, Dielectric and modulus studies on LiFe1/2Co1/2VO4. J. Alloys Compd. 462, 214–219 (2008)

    Article  Google Scholar 

  25. D. Narsimulu, B.N. Rao, M. Venkateswarlu, E.S. Srinadhu, N. Satyanarayana, Electrical and electrochemical studies of nanocrystalline mesoporous MgFe2O4 as anode material for lithium battery applications. J. Ceram. Int. (2016). doi:10.1016/j.ceramint.2016.07.168

    Google Scholar 

  26. M. Vadivel, R. Ramesh Babu, K. Sethuraman, K. Ramamurthi, M. Arivanandhan, Synthesis, structural, dielectric, magnetic and optical properties of Cr substituted CoFe2O4 nanoparticles by co-precipitation method. J. Magn. Magn. Mater. 362, 122–129 (2014)

    Article  ADS  Google Scholar 

  27. Z. Daia, L. Liua, G. Yinga, M. Yuana, X. Ren, Structural, dielectric and magnetic properties of Mn modified xBiFeO3-(1–x)BaTiO3 ceramics. J. Magn. Magn. Mater. 434, 10–13 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ruban Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowreesan, S., Ruban Kumar, A. Structural, magnetic, and electrical property of nanocrystalline perovskite structure of iron manganite (FeMnO3). Appl. Phys. A 123, 689 (2017). https://doi.org/10.1007/s00339-017-1302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1302-x

Navigation