Skip to main content
Log in

Magnetic properties of Li0.5Fe2.5O4 nanoparticles synthesized by solution combustion method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this research, lithium ferrite (Li0.5Fe2.5O4) powders were prepared by solution combustion synthesis using glycine and citric acid fuels at various fuel to oxidant molar ratios (ϕ = 0.5, 1 and 1.5). Phase evolution, microstructure and magnetic properties were characterized by thermal analysis, infrared spectroscopy, X-ray diffraction, electron microscopy and vibration sample magnetometry techniques. Single-phase lithium ferrite was formed using glycine fuel at all fuel to oxidant ratios, while some impurity α-Fe2O3 phase was appeared using citric acid fuel at ϕ ≥ 1. The phase and crystallite size mainly depended on the combustion rate through fuel type. Bulky microstructure observed for citric acid fuel was attributed to its slow combustion, while the fast exhausting of gaseous products led to spongy microstructure for glycine fuel. The highest saturation magnetization of 59.3 emu/g and coercivity of 157 Oe were achieved for the as-combusted powders using glycine fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.F. Al-Hilli, S. Li, K.S. Kassim, Structural analysis, magnetic and electrical properties of samarium substituted lithium–nickel mixed ferrites. J. Magn. Magn. Mater 324, 873–879 (2012)

    Article  ADS  Google Scholar 

  2. M. George, S.S. Nair, A.M. John, P.A. Joy, M.R. Anantharaman, Structural, magnetic and electrical properties of the sol–gel prepared Li0.5Fe2.5O4 fine particles. J. Phys. D Appl. Phys 39, 900–910 (2006)

    Article  ADS  Google Scholar 

  3. R. Parvin, A.A. Momin, A.K.M.A. Hossain, Improvement of microstructure, initial permeability, magnetization and dielectric properties of nanocrystalline LixCu0.1Co0.1Zn0.8-2xFe2 + xO4. J. Magn. Magn. Mater 401, 760–769 (2016)

    Article  ADS  Google Scholar 

  4. H.M. Widatallah, C. Johnson, A.M. Gismelseed, I.A. Al-Omari, S.J. Stewart, S.H. Al-Harthi, S. Thomas, H. Sitepu, Structural and magnetic studies of nanocrystalline Mg-doped Li0.5Fe2.5O4 particles prepared by mechanical milling. J. Phys. D Appl. Phys. 41, 165006 (2008)

    Article  ADS  Google Scholar 

  5. H. Zeng, T. Tao, Y. Wu, W. Qi, C. Kuang, S. Zhou, Y. Chen, Lithium ferrite (Li0.5Fe2.5O4) nanoparticles as anodes for lithium ion batteries. RSC Adv 4, 23145 (2014)

    Article  Google Scholar 

  6. S. Soreto Teixeira, M.P.F. Graça, L.C. Costa, Dielectric, morphological and structural properties of lithium ferrite powders prepared by solid state method. J. Non-Crys. Solids 358, 1924–1929 (2012)

    Article  ADS  Google Scholar 

  7. M.G. El-Shaarawy, M.M. Rashad, N.M. Shash, M.H. Maklad, F.A. Afifi, Structural, AC conductivity, dielectric behavior and magnetic properties of Mg-substituted LiFe5O8 powders synthesized by sol–gel auto-combustion method. J. Mater. Sci. Mater. Elec 26, 6040–6050 (2015)

    Article  Google Scholar 

  8. A. Manzoor, M.A. Khan, M. Shahid, M.F. Warsi, Investigation of structural, dielectric and magnetic properties of Ho substituted nanostructured lithium ferrites synthesized via auto-citric combustion route. J. Alloy. Compd 710, 547–556 (2017)

    Article  Google Scholar 

  9. R. Raeisi Shahraki, M. Ebrahimi, S.A. Seyyed Ebrahimi, S.M. Masoudpanah, Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method. J. Magn. Magn. Mater 324, 3762–3765 (2012)

    Article  ADS  Google Scholar 

  10. M. Jalalian, S.M. Mirkazemi, S. Alamolhoda, The effect of poly vinyl alcohol (PVA) surfactant on phase formation and magnetic properties of hydrothermally synthesized CoFe2O4 nanoparticles. J. Magn. Magn. Mater 419, 363–367 (2016)

    Article  ADS  Google Scholar 

  11. V.S. Sawant, K.Y. Rajpure, The effect of Co substitution on the structural and magnetic properties of lithium ferrite synthesized by an autocombustion method. J. Magn. Magn. Mater 382, 152–157 (2015)

    Article  ADS  Google Scholar 

  12. M.M. Rashad, M.G. El-Shaarawy, N.M. Shash, M.H. Maklad, F.A. Afifi, Controlling the composition, microstructure, electrical and magnetic properties of LiFe5O8 powders synthesized by sol gel auto-combustion method using urea as a fuel. J. Magn. Magn. Mater 374, 495–501 (2015)

    Article  ADS  Google Scholar 

  13. A. Goldman, Modem Ferrite Technology, 2nd edn. (Springer, Pittsburgh, 2006)

    Google Scholar 

  14. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials, Chem. Rev 116, 14493–14586 (2016)

    Article  Google Scholar 

  15. W. Wen, J.-M. Wu, Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC Adv. 4, 58090–58100 (2014)

    Article  Google Scholar 

  16. K.V. Manukyan, Y.-S. Chen, S. Rouvimov, P. Li, X. Li, S. Dong, X. Liu, J.K. Furdyna, A. Orlov, G.H. Bernstein, W. Porod, S. Roslyakov, A.S. Mukasyan, Ultrasmall α-Fe2O3 superparamagnetic nanoparticles with high magnetization prepared by template-assisted combustion process. J. Phys. Chem. C 118, 16264–16271 (2014)

    Article  Google Scholar 

  17. B. Pourgolmohammad, S.M. Masoudpanah, M.R. Aboutalebi, Effects of the fuel type and fuel content on the specific surface area and magnetic properties of solution combusted CoFe2O4 nanoparticles. Ceram. Int 43, 8262–8268 (2017)

    Article  Google Scholar 

  18. H. Fathi, S.M. Masoudpanah, S. Alamolhoda, H. Parnianfar, Effect of fuel type on the microstructure and magnetic properties of solution combusted Fe3O4 powders, Ceram. Int 43, 7448–7453 (2017)

    Google Scholar 

  19. B. Pourgolmohammad, S.M. Masoudpanah, M.R. Aboutalebi, Effect of starting solution acidity on the characteristics of CoFe2O4 powders prepared by solution combustion synthesis. J. Magn. Magn. Mater 424, 352–358 (2017)

    Article  ADS  Google Scholar 

  20. T. Lazarova, M. Georgieva, D. Tzankov, D. Voykova, L. Aleksandrov, Z. Cherkezova-Zheleva, D. Kovacheva, Influence of the type of fuel used for the solution combustion synthesis on the structure, morphology and magnetic properties of nanosized NiFe2O4. J. Alloy. Compd 700, 272–283 (2017)

    Article  Google Scholar 

  21. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, S. Petersen, FactSage thermochemical software and databases—recent developments, Calphad, 33, 295–311 (2009)

    Article  Google Scholar 

  22. J.D. Cox, D.D. Wagman, V.A. Medvedev, CODATA key values for thermodynamics, (Hemisphere Publishing Corp, New York, 1989)

  23. C.K. Law, Combustion physics, 1st edn. (Cambridge University Press, Cambridge, 2006)

  24. R. Liu, H. Fu, H. Yin, P. Wang, L. Lu, Y. Tao, A facile sol combustion and calcination process for the preparation of magnetic Ni0.5Zn0.5Fe2O4 nanopowders and their adsorption behaviors of Congo red. Powder Technol 274, 418–425 (2015)

    Article  Google Scholar 

  25. P. Erri, P. Pranda, A. Varma, Oxidizer–fuel interactions in aqueous combustion synthesis. 1. Iron(III) nitrate-model fuels. Ind. Eng. Chem. Res 43, 3092–3096 (2004)

    Article  Google Scholar 

  26. L.W. Tai, P.A. Lessing, Modified resin–intermediate processing of perovskite powders: Part I. Optimization of polymeric precursors. J. Mater. Res. 7, 502 (1992)

    Article  ADS  Google Scholar 

  27. G. Socrates, Infrared and raman characteristic group frequencies. (Wiley, New York, 2001)

    Google Scholar 

  28. H. Namduri, S. Nasrazadani, Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corr. Sci 50, 2493–2497 (2008)

    Article  Google Scholar 

  29. M. Srivastava, A.K. Ojha, S. Chaubey, P.K. Sharma, A.C. Pandey, Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol–gel method. Mater. Sci. Eng. B 175, 14–21 (2010)

    Article  Google Scholar 

  30. K.E. Sickafus, J.M. Wills, Structure of spinel. J. Am. Ceram. Soc. 82, 3279–3292 (1999)

    Article  Google Scholar 

  31. S. Verma, P.A. Joy, Low temperature synthesis of nanocrystalline lithium ferrite by a modified citrate gel precursor method. Mater. Res. Bull 43, 3447–3456 (2008)

    Article  Google Scholar 

  32. S. Verma, J. Karande, A. Patidar, P.A. Joy, Low-temperature synthesis of nanocrystalline powders of lithium ferrite by an autocombustion method using citric acid and glycine. Mater. Lett 59, 2630–2633 (2005)

    Article  Google Scholar 

  33. K. Deshpande, A. Mukasyan, A. Varma, Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties. Chem. Mater., 16, 4896–4904 (2004)

    Google Scholar 

  34. H. Parnianfar, S.M. Masoudpanah, S. Alamolhoda, H. Fathi, Mixture of fuels for solution combustion synthesis of porous Fe3O4 powders. J. Magn. Magn. Mater 432, 24–29 (2017)

    Article  ADS  Google Scholar 

  35. S. Javadi, S.M. Masoudpanah, A. Zakeri, Conventional versus microwave combustion synthesis of CoFe2O4 nanoparticles. J. Sol Gel Sci. Technol 79, 176–183 (2016)

    Article  Google Scholar 

  36. M.A. Willard, Y. Nakamura, D.E. Laughlin, M.E. McHenry, Magnetic properties of ordered and disordered spinel-phase ferrimagnets. J. Am. Ceram. Soc. 82, 3342–3346 (1999)

    Article  Google Scholar 

  37. S. Singhal, K. Chandra, Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route. J. Solid State Chem 180, 296–300 (2007)

    Article  ADS  Google Scholar 

  38. S.E. Shirsath, R.H. Kadam, A.S. Gaikwad, A. Ghasemi, A. Morisako, Effect of sintering temperature and the particle size on the structural and magnetic properties of nanocrystalline Li0.5Fe2.5O4. J. Magn. Magn. Mater 323, 3104–3108 (2011)

    Article  ADS  Google Scholar 

  39. H.M. Widatallah, C. Johnson, F. Berry, M. Pekala, Synthesis, structural, and magnetic characterisation of magnesium-doped lithium ferrite of composition Li0.5Fe2.5O4. Solid State Comm 120, 171–175 (2001)

    Article  ADS  Google Scholar 

  40. X. Wang, L. Gao, L. Li, H. Zheng, Z. Zhang, W. Yu, Y. Qian, Low temperature synthesis of metastable lithium ferrite: magnetic and electrochemical properties. Nanotechnology 16, 2677–2680 (2005)

    Article  ADS  Google Scholar 

  41. M.M. Hessien, Synthesis and characterization of lithium ferrite by oxalate precursor route. J. Magn. Magn. Mater 320, 2800 (2008)

    Article  ADS  Google Scholar 

  42. R.P. Patil, A.D. Pinjarkar, D.J. Sathe, A.S. Chavan, S.D. Delekar, P.P. Hankare, Cation distribution and magnetic study of Cr-substituted lithium ferrites. J Mater Sci Mater Electron 27, 1574–1581 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Masoudpanah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, P., Masoudpanah, S.M. & Alamolhoda, S. Magnetic properties of Li0.5Fe2.5O4 nanoparticles synthesized by solution combustion method. Appl. Phys. A 123, 702 (2017). https://doi.org/10.1007/s00339-017-1304-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1304-8

Navigation